SYSTEM AND METHOD FOR FORMATION PROPERTIES PREDICTION IN NEAR-REAL TIME

A method for formation properties prediction in near-real time. The method may include obtaining lab measurements of existing drill cuttings at a plurality of depths of a first well. The method may include obtaining historical drilling surface data at the plurality of depths from a plurality of well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Safonov, Sergey, Tirikov, Egor, Ismailova, Leyla, Mezghani, Mokhles M, Al Ibrahim, Mustafa
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Safonov, Sergey
Tirikov, Egor
Ismailova, Leyla
Mezghani, Mokhles M
Al Ibrahim, Mustafa
description A method for formation properties prediction in near-real time. The method may include obtaining lab measurements of existing drill cuttings at a plurality of depths of a first well. The method may include obtaining historical drilling surface data at the plurality of depths from a plurality of wells. The method may include obtaining real-time digital photos and real-time drilling surface data of new drill cuttings at a new depth of a new well. The method may include generating, using a prediction model, predicted formation properties of the new drill cuttings based on the real-time digital photos, the real-time drilling surface data, and the new depth. The method may include predicting, using a near-real-time model and the predicted formation properties, near-real-time formation properties in the new well, wherein the prediction model comprises a historical model that employs a machine-learning algorithm.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022251951A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022251951A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022251951A13</originalsourceid><addsrcrecordid>eNrjZHAPjgwOcfVVcPRzUfB1DfHwd1Fw8w8CYV_HEE9_P4WAIP8A16AQT9dgINPVxdMZLOrpp-Dn6hikG-Tq6KMQ4unrysPAmpaYU5zKC6W5GZTdXEOcPXRTC_LjU4sLEpNT81JL4kODjQyMjIxMDS1NDR0NjYlTBQCWTi2G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR FORMATION PROPERTIES PREDICTION IN NEAR-REAL TIME</title><source>esp@cenet</source><creator>Safonov, Sergey ; Tirikov, Egor ; Ismailova, Leyla ; Mezghani, Mokhles M ; Al Ibrahim, Mustafa</creator><creatorcontrib>Safonov, Sergey ; Tirikov, Egor ; Ismailova, Leyla ; Mezghani, Mokhles M ; Al Ibrahim, Mustafa</creatorcontrib><description>A method for formation properties prediction in near-real time. The method may include obtaining lab measurements of existing drill cuttings at a plurality of depths of a first well. The method may include obtaining historical drilling surface data at the plurality of depths from a plurality of wells. The method may include obtaining real-time digital photos and real-time drilling surface data of new drill cuttings at a new depth of a new well. The method may include generating, using a prediction model, predicted formation properties of the new drill cuttings based on the real-time digital photos, the real-time drilling surface data, and the new depth. The method may include predicting, using a near-real-time model and the predicted formation properties, near-real-time formation properties in the new well, wherein the prediction model comprises a historical model that employs a machine-learning algorithm.</description><language>eng</language><subject>EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; FIXED CONSTRUCTIONS ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220811&amp;DB=EPODOC&amp;CC=US&amp;NR=2022251951A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220811&amp;DB=EPODOC&amp;CC=US&amp;NR=2022251951A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Safonov, Sergey</creatorcontrib><creatorcontrib>Tirikov, Egor</creatorcontrib><creatorcontrib>Ismailova, Leyla</creatorcontrib><creatorcontrib>Mezghani, Mokhles M</creatorcontrib><creatorcontrib>Al Ibrahim, Mustafa</creatorcontrib><title>SYSTEM AND METHOD FOR FORMATION PROPERTIES PREDICTION IN NEAR-REAL TIME</title><description>A method for formation properties prediction in near-real time. The method may include obtaining lab measurements of existing drill cuttings at a plurality of depths of a first well. The method may include obtaining historical drilling surface data at the plurality of depths from a plurality of wells. The method may include obtaining real-time digital photos and real-time drilling surface data of new drill cuttings at a new depth of a new well. The method may include generating, using a prediction model, predicted formation properties of the new drill cuttings based on the real-time digital photos, the real-time drilling surface data, and the new depth. The method may include predicting, using a near-real-time model and the predicted formation properties, near-real-time formation properties in the new well, wherein the prediction model comprises a historical model that employs a machine-learning algorithm.</description><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAPjgwOcfVVcPRzUfB1DfHwd1Fw8w8CYV_HEE9_P4WAIP8A16AQT9dgINPVxdMZLOrpp-Dn6hikG-Tq6KMQ4unrysPAmpaYU5zKC6W5GZTdXEOcPXRTC_LjU4sLEpNT81JL4kODjQyMjIxMDS1NDR0NjYlTBQCWTi2G</recordid><startdate>20220811</startdate><enddate>20220811</enddate><creator>Safonov, Sergey</creator><creator>Tirikov, Egor</creator><creator>Ismailova, Leyla</creator><creator>Mezghani, Mokhles M</creator><creator>Al Ibrahim, Mustafa</creator><scope>EVB</scope></search><sort><creationdate>20220811</creationdate><title>SYSTEM AND METHOD FOR FORMATION PROPERTIES PREDICTION IN NEAR-REAL TIME</title><author>Safonov, Sergey ; Tirikov, Egor ; Ismailova, Leyla ; Mezghani, Mokhles M ; Al Ibrahim, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022251951A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><toplevel>online_resources</toplevel><creatorcontrib>Safonov, Sergey</creatorcontrib><creatorcontrib>Tirikov, Egor</creatorcontrib><creatorcontrib>Ismailova, Leyla</creatorcontrib><creatorcontrib>Mezghani, Mokhles M</creatorcontrib><creatorcontrib>Al Ibrahim, Mustafa</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Safonov, Sergey</au><au>Tirikov, Egor</au><au>Ismailova, Leyla</au><au>Mezghani, Mokhles M</au><au>Al Ibrahim, Mustafa</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR FORMATION PROPERTIES PREDICTION IN NEAR-REAL TIME</title><date>2022-08-11</date><risdate>2022</risdate><abstract>A method for formation properties prediction in near-real time. The method may include obtaining lab measurements of existing drill cuttings at a plurality of depths of a first well. The method may include obtaining historical drilling surface data at the plurality of depths from a plurality of wells. The method may include obtaining real-time digital photos and real-time drilling surface data of new drill cuttings at a new depth of a new well. The method may include generating, using a prediction model, predicted formation properties of the new drill cuttings based on the real-time digital photos, the real-time drilling surface data, and the new depth. The method may include predicting, using a near-real-time model and the predicted formation properties, near-real-time formation properties in the new well, wherein the prediction model comprises a historical model that employs a machine-learning algorithm.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022251951A1
source esp@cenet
subjects EARTH DRILLING
EARTH DRILLING, e.g. DEEP DRILLING
FIXED CONSTRUCTIONS
MINING
OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS
title SYSTEM AND METHOD FOR FORMATION PROPERTIES PREDICTION IN NEAR-REAL TIME
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Safonov,%20Sergey&rft.date=2022-08-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022251951A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true