MACHINE-LEARNING MODEL FOR DETECTING A DEVICE WITHIN A VENUE

A model is configured to determine whether a device is located within a venue. During a baseline time period, the system detects wireless pings from mobile devices. The system obtains device parameters from the wireless pings. The system evaluates the device parameters to determine whether a mobile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Isaacson, Carrie, Mohan, Kapil, Umezawa, Kai
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Isaacson, Carrie
Mohan, Kapil
Umezawa, Kai
description A model is configured to determine whether a device is located within a venue. During a baseline time period, the system detects wireless pings from mobile devices. The system obtains device parameters from the wireless pings. The system evaluates the device parameters to determine whether a mobile device entered the venue or remained outside of the venue. The system trains a model on training data corresponding to the baseline time period, the model configured to differentiate between devices that enter the venue and devices that remain outside the venue based on device parameters associated with the device. The system applies the model to future detected devices to determine whether or not the devices enter the venue.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022248166A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022248166A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022248166A13</originalsourceid><addsrcrecordid>eNrjZLDxdXT28PRz1fVxdQzy8_RzV_D1d3H1UXDzD1JwcQ1xdQ4BiTkC2WGezq4K4Z4hQNVAfpirX6grDwNrWmJOcSovlOZmUHZzDXH20E0tyI9PLS5ITE7NSy2JDw02MjAyMjKxMDQzczQ0Jk4VAHISKgI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE-LEARNING MODEL FOR DETECTING A DEVICE WITHIN A VENUE</title><source>esp@cenet</source><creator>Isaacson, Carrie ; Mohan, Kapil ; Umezawa, Kai</creator><creatorcontrib>Isaacson, Carrie ; Mohan, Kapil ; Umezawa, Kai</creatorcontrib><description>A model is configured to determine whether a device is located within a venue. During a baseline time period, the system detects wireless pings from mobile devices. The system obtains device parameters from the wireless pings. The system evaluates the device parameters to determine whether a mobile device entered the venue or remained outside of the venue. The system trains a model on training data corresponding to the baseline time period, the model configured to differentiate between devices that enter the venue and devices that remain outside the venue based on device parameters associated with the device. The system applies the model to future detected devices to determine whether or not the devices enter the venue.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRANSMISSION ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220804&amp;DB=EPODOC&amp;CC=US&amp;NR=2022248166A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220804&amp;DB=EPODOC&amp;CC=US&amp;NR=2022248166A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Isaacson, Carrie</creatorcontrib><creatorcontrib>Mohan, Kapil</creatorcontrib><creatorcontrib>Umezawa, Kai</creatorcontrib><title>MACHINE-LEARNING MODEL FOR DETECTING A DEVICE WITHIN A VENUE</title><description>A model is configured to determine whether a device is located within a venue. During a baseline time period, the system detects wireless pings from mobile devices. The system obtains device parameters from the wireless pings. The system evaluates the device parameters to determine whether a mobile device entered the venue or remained outside of the venue. The system trains a model on training data corresponding to the baseline time period, the model configured to differentiate between devices that enter the venue and devices that remain outside the venue based on device parameters associated with the device. The system applies the model to future detected devices to determine whether or not the devices enter the venue.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRANSMISSION</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDxdXT28PRz1fVxdQzy8_RzV_D1d3H1UXDzD1JwcQ1xdQ4BiTkC2WGezq4K4Z4hQNVAfpirX6grDwNrWmJOcSovlOZmUHZzDXH20E0tyI9PLS5ITE7NSy2JDw02MjAyMjKxMDQzczQ0Jk4VAHISKgI</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>Isaacson, Carrie</creator><creator>Mohan, Kapil</creator><creator>Umezawa, Kai</creator><scope>EVB</scope></search><sort><creationdate>20220804</creationdate><title>MACHINE-LEARNING MODEL FOR DETECTING A DEVICE WITHIN A VENUE</title><author>Isaacson, Carrie ; Mohan, Kapil ; Umezawa, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022248166A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRANSMISSION</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>Isaacson, Carrie</creatorcontrib><creatorcontrib>Mohan, Kapil</creatorcontrib><creatorcontrib>Umezawa, Kai</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Isaacson, Carrie</au><au>Mohan, Kapil</au><au>Umezawa, Kai</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE-LEARNING MODEL FOR DETECTING A DEVICE WITHIN A VENUE</title><date>2022-08-04</date><risdate>2022</risdate><abstract>A model is configured to determine whether a device is located within a venue. During a baseline time period, the system detects wireless pings from mobile devices. The system obtains device parameters from the wireless pings. The system evaluates the device parameters to determine whether a mobile device entered the venue or remained outside of the venue. The system trains a model on training data corresponding to the baseline time period, the model configured to differentiate between devices that enter the venue and devices that remain outside the venue based on device parameters associated with the device. The system applies the model to future detected devices to determine whether or not the devices enter the venue.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022248166A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TRANSMISSION
WIRELESS COMMUNICATIONS NETWORKS
title MACHINE-LEARNING MODEL FOR DETECTING A DEVICE WITHIN A VENUE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Isaacson,%20Carrie&rft.date=2022-08-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022248166A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true