PERSONALIZED LEARNING SYSTEM AND METHOD FOR THE AUTOMATED GENERATION OF STRUCTURED LEARNING ASSETS BASED ON USER DATA

Learning systems and methods of the present disclosure include generating a text document based on a digital file, tokenizing the text document, generating a semantic model based on the tokenized text document using an unsupervised machine learning algorithm, assigning a plurality of passage scores...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SMITH LEWIS, Andrew, HARLOW, Iain, STEWART, Kyle, MUMMA, Paul, VOLKOVITSKY, Alex
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SMITH LEWIS, Andrew
HARLOW, Iain
STEWART, Kyle
MUMMA, Paul
VOLKOVITSKY, Alex
description Learning systems and methods of the present disclosure include generating a text document based on a digital file, tokenizing the text document, generating a semantic model based on the tokenized text document using an unsupervised machine learning algorithm, assigning a plurality of passage scores to a corresponding plurality of passages of the tokenized text document, selecting one or more candidate knowledge items from the tokenized text document based on the plurality of passage scores, filtering the one or more candidate knowledge items based on user data, generating one or more structured learning assets based on the one or more filtered candidate knowledge items, generating an interaction based at least on the one or more structured learning assets, and transmitting the interaction to a user device. Each passage score is assigned based on a relationship between a corresponding passage and the semantic model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022246052A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022246052A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022246052A13</originalsourceid><addsrcrecordid>eNqNzLsKwkAQheE0FqK-w4C1EFdNP2YnF0h2ZWa20CYEWSvRQPT9TWFhaXXg5-PMk_eJWLzDpr6QhYaQXe1KkLMotYDOQktaeQuFZ9CKAIP6FnXCJTli1No78AWIcsg18O8LipAKHFGmOrEgxGBRcZnMbv19jKvvLpJ1QZpXmzg8uzgO_TU-4qsLYlJjzD5LDwa3u__UB-c8OhU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PERSONALIZED LEARNING SYSTEM AND METHOD FOR THE AUTOMATED GENERATION OF STRUCTURED LEARNING ASSETS BASED ON USER DATA</title><source>esp@cenet</source><creator>SMITH LEWIS, Andrew ; HARLOW, Iain ; STEWART, Kyle ; MUMMA, Paul ; VOLKOVITSKY, Alex</creator><creatorcontrib>SMITH LEWIS, Andrew ; HARLOW, Iain ; STEWART, Kyle ; MUMMA, Paul ; VOLKOVITSKY, Alex</creatorcontrib><description>Learning systems and methods of the present disclosure include generating a text document based on a digital file, tokenizing the text document, generating a semantic model based on the tokenized text document using an unsupervised machine learning algorithm, assigning a plurality of passage scores to a corresponding plurality of passages of the tokenized text document, selecting one or more candidate knowledge items from the tokenized text document based on the plurality of passage scores, filtering the one or more candidate knowledge items based on user data, generating one or more structured learning assets based on the one or more filtered candidate knowledge items, generating an interaction based at least on the one or more structured learning assets, and transmitting the interaction to a user device. Each passage score is assigned based on a relationship between a corresponding passage and the semantic model.</description><language>eng</language><subject>ADVERTISING ; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND,DEAF OR MUTE ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; CRYPTOGRAPHY ; DIAGRAMS ; DISPLAY ; EDUCATION ; EDUCATIONAL OR DEMONSTRATION APPLIANCES ; GLOBES ; PHYSICS ; PLANETARIA ; SEALS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220804&amp;DB=EPODOC&amp;CC=US&amp;NR=2022246052A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220804&amp;DB=EPODOC&amp;CC=US&amp;NR=2022246052A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SMITH LEWIS, Andrew</creatorcontrib><creatorcontrib>HARLOW, Iain</creatorcontrib><creatorcontrib>STEWART, Kyle</creatorcontrib><creatorcontrib>MUMMA, Paul</creatorcontrib><creatorcontrib>VOLKOVITSKY, Alex</creatorcontrib><title>PERSONALIZED LEARNING SYSTEM AND METHOD FOR THE AUTOMATED GENERATION OF STRUCTURED LEARNING ASSETS BASED ON USER DATA</title><description>Learning systems and methods of the present disclosure include generating a text document based on a digital file, tokenizing the text document, generating a semantic model based on the tokenized text document using an unsupervised machine learning algorithm, assigning a plurality of passage scores to a corresponding plurality of passages of the tokenized text document, selecting one or more candidate knowledge items from the tokenized text document based on the plurality of passage scores, filtering the one or more candidate knowledge items based on user data, generating one or more structured learning assets based on the one or more filtered candidate knowledge items, generating an interaction based at least on the one or more structured learning assets, and transmitting the interaction to a user device. Each passage score is assigned based on a relationship between a corresponding passage and the semantic model.</description><subject>ADVERTISING</subject><subject>APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND,DEAF OR MUTE</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>CRYPTOGRAPHY</subject><subject>DIAGRAMS</subject><subject>DISPLAY</subject><subject>EDUCATION</subject><subject>EDUCATIONAL OR DEMONSTRATION APPLIANCES</subject><subject>GLOBES</subject><subject>PHYSICS</subject><subject>PLANETARIA</subject><subject>SEALS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzLsKwkAQheE0FqK-w4C1EFdNP2YnF0h2ZWa20CYEWSvRQPT9TWFhaXXg5-PMk_eJWLzDpr6QhYaQXe1KkLMotYDOQktaeQuFZ9CKAIP6FnXCJTli1No78AWIcsg18O8LipAKHFGmOrEgxGBRcZnMbv19jKvvLpJ1QZpXmzg8uzgO_TU-4qsLYlJjzD5LDwa3u__UB-c8OhU</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>SMITH LEWIS, Andrew</creator><creator>HARLOW, Iain</creator><creator>STEWART, Kyle</creator><creator>MUMMA, Paul</creator><creator>VOLKOVITSKY, Alex</creator><scope>EVB</scope></search><sort><creationdate>20220804</creationdate><title>PERSONALIZED LEARNING SYSTEM AND METHOD FOR THE AUTOMATED GENERATION OF STRUCTURED LEARNING ASSETS BASED ON USER DATA</title><author>SMITH LEWIS, Andrew ; HARLOW, Iain ; STEWART, Kyle ; MUMMA, Paul ; VOLKOVITSKY, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022246052A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ADVERTISING</topic><topic>APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND,DEAF OR MUTE</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>CRYPTOGRAPHY</topic><topic>DIAGRAMS</topic><topic>DISPLAY</topic><topic>EDUCATION</topic><topic>EDUCATIONAL OR DEMONSTRATION APPLIANCES</topic><topic>GLOBES</topic><topic>PHYSICS</topic><topic>PLANETARIA</topic><topic>SEALS</topic><toplevel>online_resources</toplevel><creatorcontrib>SMITH LEWIS, Andrew</creatorcontrib><creatorcontrib>HARLOW, Iain</creatorcontrib><creatorcontrib>STEWART, Kyle</creatorcontrib><creatorcontrib>MUMMA, Paul</creatorcontrib><creatorcontrib>VOLKOVITSKY, Alex</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SMITH LEWIS, Andrew</au><au>HARLOW, Iain</au><au>STEWART, Kyle</au><au>MUMMA, Paul</au><au>VOLKOVITSKY, Alex</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PERSONALIZED LEARNING SYSTEM AND METHOD FOR THE AUTOMATED GENERATION OF STRUCTURED LEARNING ASSETS BASED ON USER DATA</title><date>2022-08-04</date><risdate>2022</risdate><abstract>Learning systems and methods of the present disclosure include generating a text document based on a digital file, tokenizing the text document, generating a semantic model based on the tokenized text document using an unsupervised machine learning algorithm, assigning a plurality of passage scores to a corresponding plurality of passages of the tokenized text document, selecting one or more candidate knowledge items from the tokenized text document based on the plurality of passage scores, filtering the one or more candidate knowledge items based on user data, generating one or more structured learning assets based on the one or more filtered candidate knowledge items, generating an interaction based at least on the one or more structured learning assets, and transmitting the interaction to a user device. Each passage score is assigned based on a relationship between a corresponding passage and the semantic model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022246052A1
source esp@cenet
subjects ADVERTISING
APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND,DEAF OR MUTE
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
CRYPTOGRAPHY
DIAGRAMS
DISPLAY
EDUCATION
EDUCATIONAL OR DEMONSTRATION APPLIANCES
GLOBES
PHYSICS
PLANETARIA
SEALS
title PERSONALIZED LEARNING SYSTEM AND METHOD FOR THE AUTOMATED GENERATION OF STRUCTURED LEARNING ASSETS BASED ON USER DATA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A27%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SMITH%20LEWIS,%20Andrew&rft.date=2022-08-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022246052A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true