GENERATION OF PROTEIN SEQUENCES USING MACHINE LEARNING TECHNIQUES

Amino acid sequences of antibodies can be generated using a generative adversarial network that includes a first generating component that generates amino acid sequences of antibody light chains and a second generating component generates amino acid sequences of antibody heavy chains. Amino acid seq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Clark, Rutilio H, Ketchem, Randal Robert, Taylor, John Alex, Shaver, Jeremy Martin, Amimeur, Tileli
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Clark, Rutilio H
Ketchem, Randal Robert
Taylor, John Alex
Shaver, Jeremy Martin
Amimeur, Tileli
description Amino acid sequences of antibodies can be generated using a generative adversarial network that includes a first generating component that generates amino acid sequences of antibody light chains and a second generating component generates amino acid sequences of antibody heavy chains. Amino acid sequences of antibodies can be produced by combining the respective amino acid sequences produced by the first generating component and the second generating component. The training of the first generating component and the second generating component can proceed at different rates. Additionally, the antibody amino acids produced by combining amino acid sequences from the first generating component and the second generating component may be evaluated according to complentarity-determining regions of the antibody amino acid sequences. Training datasets may be produced using amino acid sequences that correspond to antibodies have particular binding affinities with respect to molecules, such as binding affinity with major histocompatibility complex (MHC) molecules.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022230710A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022230710A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022230710A13</originalsourceid><addsrcrecordid>eNrjZHB0d_VzDXIM8fT3U_B3UwgI8g9x9fRTCHYNDHX1c3YNVggN9vRzV_B1dPbw9HNV8HF1DPIDCYS4Onv4eQIVBfMwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDIyMjYwNzQwNHQ2PiVAEAlkIr9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GENERATION OF PROTEIN SEQUENCES USING MACHINE LEARNING TECHNIQUES</title><source>esp@cenet</source><creator>Clark, Rutilio H ; Ketchem, Randal Robert ; Taylor, John Alex ; Shaver, Jeremy Martin ; Amimeur, Tileli</creator><creatorcontrib>Clark, Rutilio H ; Ketchem, Randal Robert ; Taylor, John Alex ; Shaver, Jeremy Martin ; Amimeur, Tileli</creatorcontrib><description>Amino acid sequences of antibodies can be generated using a generative adversarial network that includes a first generating component that generates amino acid sequences of antibody light chains and a second generating component generates amino acid sequences of antibody heavy chains. Amino acid sequences of antibodies can be produced by combining the respective amino acid sequences produced by the first generating component and the second generating component. The training of the first generating component and the second generating component can proceed at different rates. Additionally, the antibody amino acids produced by combining amino acid sequences from the first generating component and the second generating component may be evaluated according to complentarity-determining regions of the antibody amino acid sequences. Training datasets may be produced using amino acid sequences that correspond to antibodies have particular binding affinities with respect to molecules, such as binding affinity with major histocompatibility complex (MHC) molecules.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220721&amp;DB=EPODOC&amp;CC=US&amp;NR=2022230710A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220721&amp;DB=EPODOC&amp;CC=US&amp;NR=2022230710A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Clark, Rutilio H</creatorcontrib><creatorcontrib>Ketchem, Randal Robert</creatorcontrib><creatorcontrib>Taylor, John Alex</creatorcontrib><creatorcontrib>Shaver, Jeremy Martin</creatorcontrib><creatorcontrib>Amimeur, Tileli</creatorcontrib><title>GENERATION OF PROTEIN SEQUENCES USING MACHINE LEARNING TECHNIQUES</title><description>Amino acid sequences of antibodies can be generated using a generative adversarial network that includes a first generating component that generates amino acid sequences of antibody light chains and a second generating component generates amino acid sequences of antibody heavy chains. Amino acid sequences of antibodies can be produced by combining the respective amino acid sequences produced by the first generating component and the second generating component. The training of the first generating component and the second generating component can proceed at different rates. Additionally, the antibody amino acids produced by combining amino acid sequences from the first generating component and the second generating component may be evaluated according to complentarity-determining regions of the antibody amino acid sequences. Training datasets may be produced using amino acid sequences that correspond to antibodies have particular binding affinities with respect to molecules, such as binding affinity with major histocompatibility complex (MHC) molecules.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB0d_VzDXIM8fT3U_B3UwgI8g9x9fRTCHYNDHX1c3YNVggN9vRzV_B1dPbw9HNV8HF1DPIDCYS4Onv4eQIVBfMwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDIyMjYwNzQwNHQ2PiVAEAlkIr9A</recordid><startdate>20220721</startdate><enddate>20220721</enddate><creator>Clark, Rutilio H</creator><creator>Ketchem, Randal Robert</creator><creator>Taylor, John Alex</creator><creator>Shaver, Jeremy Martin</creator><creator>Amimeur, Tileli</creator><scope>EVB</scope></search><sort><creationdate>20220721</creationdate><title>GENERATION OF PROTEIN SEQUENCES USING MACHINE LEARNING TECHNIQUES</title><author>Clark, Rutilio H ; Ketchem, Randal Robert ; Taylor, John Alex ; Shaver, Jeremy Martin ; Amimeur, Tileli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022230710A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Clark, Rutilio H</creatorcontrib><creatorcontrib>Ketchem, Randal Robert</creatorcontrib><creatorcontrib>Taylor, John Alex</creatorcontrib><creatorcontrib>Shaver, Jeremy Martin</creatorcontrib><creatorcontrib>Amimeur, Tileli</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Clark, Rutilio H</au><au>Ketchem, Randal Robert</au><au>Taylor, John Alex</au><au>Shaver, Jeremy Martin</au><au>Amimeur, Tileli</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GENERATION OF PROTEIN SEQUENCES USING MACHINE LEARNING TECHNIQUES</title><date>2022-07-21</date><risdate>2022</risdate><abstract>Amino acid sequences of antibodies can be generated using a generative adversarial network that includes a first generating component that generates amino acid sequences of antibody light chains and a second generating component generates amino acid sequences of antibody heavy chains. Amino acid sequences of antibodies can be produced by combining the respective amino acid sequences produced by the first generating component and the second generating component. The training of the first generating component and the second generating component can proceed at different rates. Additionally, the antibody amino acids produced by combining amino acid sequences from the first generating component and the second generating component may be evaluated according to complentarity-determining regions of the antibody amino acid sequences. Training datasets may be produced using amino acid sequences that correspond to antibodies have particular binding affinities with respect to molecules, such as binding affinity with major histocompatibility complex (MHC) molecules.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022230710A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title GENERATION OF PROTEIN SEQUENCES USING MACHINE LEARNING TECHNIQUES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Clark,%20Rutilio%20H&rft.date=2022-07-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022230710A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true