GENERATION OF PROTEIN SEQUENCES USING MACHINE LEARNING TECHNIQUES
Amino acid sequences of antibodies can be generated using a generative adversarial network that includes a first generating component that generates amino acid sequences of antibody light chains and a second generating component generates amino acid sequences of antibody heavy chains. Amino acid seq...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Clark, Rutilio H Ketchem, Randal Robert Taylor, John Alex Shaver, Jeremy Martin Amimeur, Tileli |
description | Amino acid sequences of antibodies can be generated using a generative adversarial network that includes a first generating component that generates amino acid sequences of antibody light chains and a second generating component generates amino acid sequences of antibody heavy chains. Amino acid sequences of antibodies can be produced by combining the respective amino acid sequences produced by the first generating component and the second generating component. The training of the first generating component and the second generating component can proceed at different rates. Additionally, the antibody amino acids produced by combining amino acid sequences from the first generating component and the second generating component may be evaluated according to complentarity-determining regions of the antibody amino acid sequences. Training datasets may be produced using amino acid sequences that correspond to antibodies have particular binding affinities with respect to molecules, such as binding affinity with major histocompatibility complex (MHC) molecules. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022230710A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022230710A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022230710A13</originalsourceid><addsrcrecordid>eNrjZHB0d_VzDXIM8fT3U_B3UwgI8g9x9fRTCHYNDHX1c3YNVggN9vRzV_B1dPbw9HNV8HF1DPIDCYS4Onv4eQIVBfMwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDIyMjYwNzQwNHQ2PiVAEAlkIr9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GENERATION OF PROTEIN SEQUENCES USING MACHINE LEARNING TECHNIQUES</title><source>esp@cenet</source><creator>Clark, Rutilio H ; Ketchem, Randal Robert ; Taylor, John Alex ; Shaver, Jeremy Martin ; Amimeur, Tileli</creator><creatorcontrib>Clark, Rutilio H ; Ketchem, Randal Robert ; Taylor, John Alex ; Shaver, Jeremy Martin ; Amimeur, Tileli</creatorcontrib><description>Amino acid sequences of antibodies can be generated using a generative adversarial network that includes a first generating component that generates amino acid sequences of antibody light chains and a second generating component generates amino acid sequences of antibody heavy chains. Amino acid sequences of antibodies can be produced by combining the respective amino acid sequences produced by the first generating component and the second generating component. The training of the first generating component and the second generating component can proceed at different rates. Additionally, the antibody amino acids produced by combining amino acid sequences from the first generating component and the second generating component may be evaluated according to complentarity-determining regions of the antibody amino acid sequences. Training datasets may be produced using amino acid sequences that correspond to antibodies have particular binding affinities with respect to molecules, such as binding affinity with major histocompatibility complex (MHC) molecules.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220721&DB=EPODOC&CC=US&NR=2022230710A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220721&DB=EPODOC&CC=US&NR=2022230710A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Clark, Rutilio H</creatorcontrib><creatorcontrib>Ketchem, Randal Robert</creatorcontrib><creatorcontrib>Taylor, John Alex</creatorcontrib><creatorcontrib>Shaver, Jeremy Martin</creatorcontrib><creatorcontrib>Amimeur, Tileli</creatorcontrib><title>GENERATION OF PROTEIN SEQUENCES USING MACHINE LEARNING TECHNIQUES</title><description>Amino acid sequences of antibodies can be generated using a generative adversarial network that includes a first generating component that generates amino acid sequences of antibody light chains and a second generating component generates amino acid sequences of antibody heavy chains. Amino acid sequences of antibodies can be produced by combining the respective amino acid sequences produced by the first generating component and the second generating component. The training of the first generating component and the second generating component can proceed at different rates. Additionally, the antibody amino acids produced by combining amino acid sequences from the first generating component and the second generating component may be evaluated according to complentarity-determining regions of the antibody amino acid sequences. Training datasets may be produced using amino acid sequences that correspond to antibodies have particular binding affinities with respect to molecules, such as binding affinity with major histocompatibility complex (MHC) molecules.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB0d_VzDXIM8fT3U_B3UwgI8g9x9fRTCHYNDHX1c3YNVggN9vRzV_B1dPbw9HNV8HF1DPIDCYS4Onv4eQIVBfMwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDIyMjYwNzQwNHQ2PiVAEAlkIr9A</recordid><startdate>20220721</startdate><enddate>20220721</enddate><creator>Clark, Rutilio H</creator><creator>Ketchem, Randal Robert</creator><creator>Taylor, John Alex</creator><creator>Shaver, Jeremy Martin</creator><creator>Amimeur, Tileli</creator><scope>EVB</scope></search><sort><creationdate>20220721</creationdate><title>GENERATION OF PROTEIN SEQUENCES USING MACHINE LEARNING TECHNIQUES</title><author>Clark, Rutilio H ; Ketchem, Randal Robert ; Taylor, John Alex ; Shaver, Jeremy Martin ; Amimeur, Tileli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022230710A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Clark, Rutilio H</creatorcontrib><creatorcontrib>Ketchem, Randal Robert</creatorcontrib><creatorcontrib>Taylor, John Alex</creatorcontrib><creatorcontrib>Shaver, Jeremy Martin</creatorcontrib><creatorcontrib>Amimeur, Tileli</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Clark, Rutilio H</au><au>Ketchem, Randal Robert</au><au>Taylor, John Alex</au><au>Shaver, Jeremy Martin</au><au>Amimeur, Tileli</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GENERATION OF PROTEIN SEQUENCES USING MACHINE LEARNING TECHNIQUES</title><date>2022-07-21</date><risdate>2022</risdate><abstract>Amino acid sequences of antibodies can be generated using a generative adversarial network that includes a first generating component that generates amino acid sequences of antibody light chains and a second generating component generates amino acid sequences of antibody heavy chains. Amino acid sequences of antibodies can be produced by combining the respective amino acid sequences produced by the first generating component and the second generating component. The training of the first generating component and the second generating component can proceed at different rates. Additionally, the antibody amino acids produced by combining amino acid sequences from the first generating component and the second generating component may be evaluated according to complentarity-determining regions of the antibody amino acid sequences. Training datasets may be produced using amino acid sequences that correspond to antibodies have particular binding affinities with respect to molecules, such as binding affinity with major histocompatibility complex (MHC) molecules.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022230710A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
title | GENERATION OF PROTEIN SEQUENCES USING MACHINE LEARNING TECHNIQUES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Clark,%20Rutilio%20H&rft.date=2022-07-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022230710A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |