METHODS OF REAL-TIME SPATIO-TEMPORAL ACTIVITY DETECTION AND CATEGORIZATION FROM UNTRIMMED VIDEO SEGMENTS

Methods of detecting and categorizing an action in an untrimmed video segment regardless of the scale of the action and the close proximity of other actions. The methods improve upon the prior art which either require trimmed video segments including only a single activity depicted therein, or untri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tirupattur, Praveen, Rawat, Yogesh Singh, Rizve, Mamshad Nayeem, Rana, Aayush Jung Bahadur, Shah, Mubarak
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Tirupattur, Praveen
Rawat, Yogesh Singh
Rizve, Mamshad Nayeem
Rana, Aayush Jung Bahadur
Shah, Mubarak
description Methods of detecting and categorizing an action in an untrimmed video segment regardless of the scale of the action and the close proximity of other actions. The methods improve upon the prior art which either require trimmed video segments including only a single activity depicted therein, or untrimmed video segments including relatively few actions, persons, or objects of interest, thereby directing the classification. Instead, the methods utilize a plurality of tubelets used to represent discreet actions, persons, and objects of interest within the comprehensive untrimmed video segment. The tubelets are localized to correct for pixel-level foreground-background biases, which are then turned into short spatio-temporal action tubelets that are passed to a classification network to obtain multi-label predictions. After classification, the tubelets are be linked together to obtain the final detections with varying lengths, and the method merges the short action tubelets into final action detections.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022222940A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022222940A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022222940A13</originalsourceid><addsrcrecordid>eNqNirsKwkAQRdNYiPoPA9aBGG0sh-wkWcjsyO4koE0IsmIhGoj_jw_8AG9zDoc7T65MWosJICV4wiZVywThgGolVeKDeGwAC7Wd1SMYUnq7OEBnoEClSrw94TeVXhhap94yk4HOGhIIVDE5DctkdhluU1z9uEjWJWlRp3F89HEah3O8x2ffhjzLP9vvMtxs_3u9ACgVNuc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS OF REAL-TIME SPATIO-TEMPORAL ACTIVITY DETECTION AND CATEGORIZATION FROM UNTRIMMED VIDEO SEGMENTS</title><source>esp@cenet</source><creator>Tirupattur, Praveen ; Rawat, Yogesh Singh ; Rizve, Mamshad Nayeem ; Rana, Aayush Jung Bahadur ; Shah, Mubarak</creator><creatorcontrib>Tirupattur, Praveen ; Rawat, Yogesh Singh ; Rizve, Mamshad Nayeem ; Rana, Aayush Jung Bahadur ; Shah, Mubarak</creatorcontrib><description>Methods of detecting and categorizing an action in an untrimmed video segment regardless of the scale of the action and the close proximity of other actions. The methods improve upon the prior art which either require trimmed video segments including only a single activity depicted therein, or untrimmed video segments including relatively few actions, persons, or objects of interest, thereby directing the classification. Instead, the methods utilize a plurality of tubelets used to represent discreet actions, persons, and objects of interest within the comprehensive untrimmed video segment. The tubelets are localized to correct for pixel-level foreground-background biases, which are then turned into short spatio-temporal action tubelets that are passed to a classification network to obtain multi-label predictions. After classification, the tubelets are be linked together to obtain the final detections with varying lengths, and the method merges the short action tubelets into final action detections.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220714&amp;DB=EPODOC&amp;CC=US&amp;NR=2022222940A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220714&amp;DB=EPODOC&amp;CC=US&amp;NR=2022222940A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Tirupattur, Praveen</creatorcontrib><creatorcontrib>Rawat, Yogesh Singh</creatorcontrib><creatorcontrib>Rizve, Mamshad Nayeem</creatorcontrib><creatorcontrib>Rana, Aayush Jung Bahadur</creatorcontrib><creatorcontrib>Shah, Mubarak</creatorcontrib><title>METHODS OF REAL-TIME SPATIO-TEMPORAL ACTIVITY DETECTION AND CATEGORIZATION FROM UNTRIMMED VIDEO SEGMENTS</title><description>Methods of detecting and categorizing an action in an untrimmed video segment regardless of the scale of the action and the close proximity of other actions. The methods improve upon the prior art which either require trimmed video segments including only a single activity depicted therein, or untrimmed video segments including relatively few actions, persons, or objects of interest, thereby directing the classification. Instead, the methods utilize a plurality of tubelets used to represent discreet actions, persons, and objects of interest within the comprehensive untrimmed video segment. The tubelets are localized to correct for pixel-level foreground-background biases, which are then turned into short spatio-temporal action tubelets that are passed to a classification network to obtain multi-label predictions. After classification, the tubelets are be linked together to obtain the final detections with varying lengths, and the method merges the short action tubelets into final action detections.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirsKwkAQRdNYiPoPA9aBGG0sh-wkWcjsyO4koE0IsmIhGoj_jw_8AG9zDoc7T65MWosJICV4wiZVywThgGolVeKDeGwAC7Wd1SMYUnq7OEBnoEClSrw94TeVXhhap94yk4HOGhIIVDE5DctkdhluU1z9uEjWJWlRp3F89HEah3O8x2ffhjzLP9vvMtxs_3u9ACgVNuc</recordid><startdate>20220714</startdate><enddate>20220714</enddate><creator>Tirupattur, Praveen</creator><creator>Rawat, Yogesh Singh</creator><creator>Rizve, Mamshad Nayeem</creator><creator>Rana, Aayush Jung Bahadur</creator><creator>Shah, Mubarak</creator><scope>EVB</scope></search><sort><creationdate>20220714</creationdate><title>METHODS OF REAL-TIME SPATIO-TEMPORAL ACTIVITY DETECTION AND CATEGORIZATION FROM UNTRIMMED VIDEO SEGMENTS</title><author>Tirupattur, Praveen ; Rawat, Yogesh Singh ; Rizve, Mamshad Nayeem ; Rana, Aayush Jung Bahadur ; Shah, Mubarak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022222940A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Tirupattur, Praveen</creatorcontrib><creatorcontrib>Rawat, Yogesh Singh</creatorcontrib><creatorcontrib>Rizve, Mamshad Nayeem</creatorcontrib><creatorcontrib>Rana, Aayush Jung Bahadur</creatorcontrib><creatorcontrib>Shah, Mubarak</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tirupattur, Praveen</au><au>Rawat, Yogesh Singh</au><au>Rizve, Mamshad Nayeem</au><au>Rana, Aayush Jung Bahadur</au><au>Shah, Mubarak</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS OF REAL-TIME SPATIO-TEMPORAL ACTIVITY DETECTION AND CATEGORIZATION FROM UNTRIMMED VIDEO SEGMENTS</title><date>2022-07-14</date><risdate>2022</risdate><abstract>Methods of detecting and categorizing an action in an untrimmed video segment regardless of the scale of the action and the close proximity of other actions. The methods improve upon the prior art which either require trimmed video segments including only a single activity depicted therein, or untrimmed video segments including relatively few actions, persons, or objects of interest, thereby directing the classification. Instead, the methods utilize a plurality of tubelets used to represent discreet actions, persons, and objects of interest within the comprehensive untrimmed video segment. The tubelets are localized to correct for pixel-level foreground-background biases, which are then turned into short spatio-temporal action tubelets that are passed to a classification network to obtain multi-label predictions. After classification, the tubelets are be linked together to obtain the final detections with varying lengths, and the method merges the short action tubelets into final action detections.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022222940A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
PHYSICS
title METHODS OF REAL-TIME SPATIO-TEMPORAL ACTIVITY DETECTION AND CATEGORIZATION FROM UNTRIMMED VIDEO SEGMENTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Tirupattur,%20Praveen&rft.date=2022-07-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022222940A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true