USING ARTIFICIAL INTELLIGENCE TO OPTIMIZE SOFTWARE TO RUN ON HETEROGENEOUS COMPUTING RESOURCE

Systems and methods are described that implement a tool chain which receives original software source code, analyzes the code and divides the code into modules that run optimally on the available heterogeneous resources. For example, the toolchain system segments original source code into code segme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kostrzewski, Andrew, Facory, Omar
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kostrzewski, Andrew
Facory, Omar
description Systems and methods are described that implement a tool chain which receives original software source code, analyzes the code and divides the code into modules that run optimally on the available heterogeneous resources. For example, the toolchain system segments original source code into code segments, and determine the specialized processor resource, such as a digital signal processing (DSP) processor, Field Programming Gate Array (FPGA), Graphical Processing Unit (GPU), and the like, that most optimally performs computations of the particular code segment. A parsing engine determines the processor of the heterogenous resources, based on a set of rules and/or a trained classifier (e.g., a trained machine learning model). New code segments can be generated that can be executed on the determined type of processor. Further, the system enables application programming interfaces (APIs) that can interface the new code segment with other generated code segments and/or some portions of the original code.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022206770A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022206770A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022206770A13</originalsourceid><addsrcrecordid>eNqNjMsKwjAQAHPxIOo_LHgWagR7DmHTLrTZkmwoCFKKxJNoof4_PvADPA0MwyzVOUXyFZgg5MiSaYC8YNNQhd4iCAN3Qi2dECI76U34ypA8sIcaBQO_U-QUwXLbJfnsAkZOweJaLa7jbc6bH1dq61BsvcvTY8jzNF7yPT-HFHWhtS6OZVmY_eG_6gX3eDQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>USING ARTIFICIAL INTELLIGENCE TO OPTIMIZE SOFTWARE TO RUN ON HETEROGENEOUS COMPUTING RESOURCE</title><source>esp@cenet</source><creator>Kostrzewski, Andrew ; Facory, Omar</creator><creatorcontrib>Kostrzewski, Andrew ; Facory, Omar</creatorcontrib><description>Systems and methods are described that implement a tool chain which receives original software source code, analyzes the code and divides the code into modules that run optimally on the available heterogeneous resources. For example, the toolchain system segments original source code into code segments, and determine the specialized processor resource, such as a digital signal processing (DSP) processor, Field Programming Gate Array (FPGA), Graphical Processing Unit (GPU), and the like, that most optimally performs computations of the particular code segment. A parsing engine determines the processor of the heterogenous resources, based on a set of rules and/or a trained classifier (e.g., a trained machine learning model). New code segments can be generated that can be executed on the determined type of processor. Further, the system enables application programming interfaces (APIs) that can interface the new code segment with other generated code segments and/or some portions of the original code.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220630&amp;DB=EPODOC&amp;CC=US&amp;NR=2022206770A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220630&amp;DB=EPODOC&amp;CC=US&amp;NR=2022206770A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kostrzewski, Andrew</creatorcontrib><creatorcontrib>Facory, Omar</creatorcontrib><title>USING ARTIFICIAL INTELLIGENCE TO OPTIMIZE SOFTWARE TO RUN ON HETEROGENEOUS COMPUTING RESOURCE</title><description>Systems and methods are described that implement a tool chain which receives original software source code, analyzes the code and divides the code into modules that run optimally on the available heterogeneous resources. For example, the toolchain system segments original source code into code segments, and determine the specialized processor resource, such as a digital signal processing (DSP) processor, Field Programming Gate Array (FPGA), Graphical Processing Unit (GPU), and the like, that most optimally performs computations of the particular code segment. A parsing engine determines the processor of the heterogenous resources, based on a set of rules and/or a trained classifier (e.g., a trained machine learning model). New code segments can be generated that can be executed on the determined type of processor. Further, the system enables application programming interfaces (APIs) that can interface the new code segment with other generated code segments and/or some portions of the original code.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMsKwjAQAHPxIOo_LHgWagR7DmHTLrTZkmwoCFKKxJNoof4_PvADPA0MwyzVOUXyFZgg5MiSaYC8YNNQhd4iCAN3Qi2dECI76U34ypA8sIcaBQO_U-QUwXLbJfnsAkZOweJaLa7jbc6bH1dq61BsvcvTY8jzNF7yPT-HFHWhtS6OZVmY_eG_6gX3eDQQ</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Kostrzewski, Andrew</creator><creator>Facory, Omar</creator><scope>EVB</scope></search><sort><creationdate>20220630</creationdate><title>USING ARTIFICIAL INTELLIGENCE TO OPTIMIZE SOFTWARE TO RUN ON HETEROGENEOUS COMPUTING RESOURCE</title><author>Kostrzewski, Andrew ; Facory, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022206770A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kostrzewski, Andrew</creatorcontrib><creatorcontrib>Facory, Omar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kostrzewski, Andrew</au><au>Facory, Omar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>USING ARTIFICIAL INTELLIGENCE TO OPTIMIZE SOFTWARE TO RUN ON HETEROGENEOUS COMPUTING RESOURCE</title><date>2022-06-30</date><risdate>2022</risdate><abstract>Systems and methods are described that implement a tool chain which receives original software source code, analyzes the code and divides the code into modules that run optimally on the available heterogeneous resources. For example, the toolchain system segments original source code into code segments, and determine the specialized processor resource, such as a digital signal processing (DSP) processor, Field Programming Gate Array (FPGA), Graphical Processing Unit (GPU), and the like, that most optimally performs computations of the particular code segment. A parsing engine determines the processor of the heterogenous resources, based on a set of rules and/or a trained classifier (e.g., a trained machine learning model). New code segments can be generated that can be executed on the determined type of processor. Further, the system enables application programming interfaces (APIs) that can interface the new code segment with other generated code segments and/or some portions of the original code.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022206770A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title USING ARTIFICIAL INTELLIGENCE TO OPTIMIZE SOFTWARE TO RUN ON HETEROGENEOUS COMPUTING RESOURCE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kostrzewski,%20Andrew&rft.date=2022-06-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022206770A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true