SELF-IMPROVING BAYESIAN NETWORK LEARNING

A method, a computer system, and a computer program product for creating multiple models asynchronously is provided. Embodiments of the present invention may include receiving input data, wherein input data includes a full training dataset. Embodiments of the present invention may include building,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pascale, Alessandra, Ganguly, Debasis, Tommasi, Pierpaolo, Deparis, Stephane
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Pascale, Alessandra
Ganguly, Debasis
Tommasi, Pierpaolo
Deparis, Stephane
description A method, a computer system, and a computer program product for creating multiple models asynchronously is provided. Embodiments of the present invention may include receiving input data, wherein input data includes a full training dataset. Embodiments of the present invention may include building, asynchronously, one or more Bayesian network models using one or more portions of the input data on a first pipeline and building a free learning model using the full training dataset on a second pipeline. Embodiments of the present invention may include retrieving the one or more Bayesian network models from the first pipeline. Embodiments of the present invention may include retrieving the free learning model from the second pipeline.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022188693A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022188693A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022188693A13</originalsourceid><addsrcrecordid>eNrjZNAIdvVx0_X0DQjyD_P0c1dwcox0DfZ09FPwcw0J9w_yVvBxdQzyA8rwMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyMjQwsLM0tjR0Nj4lQBALJAJU0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SELF-IMPROVING BAYESIAN NETWORK LEARNING</title><source>esp@cenet</source><creator>Pascale, Alessandra ; Ganguly, Debasis ; Tommasi, Pierpaolo ; Deparis, Stephane</creator><creatorcontrib>Pascale, Alessandra ; Ganguly, Debasis ; Tommasi, Pierpaolo ; Deparis, Stephane</creatorcontrib><description>A method, a computer system, and a computer program product for creating multiple models asynchronously is provided. Embodiments of the present invention may include receiving input data, wherein input data includes a full training dataset. Embodiments of the present invention may include building, asynchronously, one or more Bayesian network models using one or more portions of the input data on a first pipeline and building a free learning model using the full training dataset on a second pipeline. Embodiments of the present invention may include retrieving the one or more Bayesian network models from the first pipeline. Embodiments of the present invention may include retrieving the free learning model from the second pipeline.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220616&amp;DB=EPODOC&amp;CC=US&amp;NR=2022188693A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220616&amp;DB=EPODOC&amp;CC=US&amp;NR=2022188693A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pascale, Alessandra</creatorcontrib><creatorcontrib>Ganguly, Debasis</creatorcontrib><creatorcontrib>Tommasi, Pierpaolo</creatorcontrib><creatorcontrib>Deparis, Stephane</creatorcontrib><title>SELF-IMPROVING BAYESIAN NETWORK LEARNING</title><description>A method, a computer system, and a computer program product for creating multiple models asynchronously is provided. Embodiments of the present invention may include receiving input data, wherein input data includes a full training dataset. Embodiments of the present invention may include building, asynchronously, one or more Bayesian network models using one or more portions of the input data on a first pipeline and building a free learning model using the full training dataset on a second pipeline. Embodiments of the present invention may include retrieving the one or more Bayesian network models from the first pipeline. Embodiments of the present invention may include retrieving the free learning model from the second pipeline.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAIdvVx0_X0DQjyD_P0c1dwcox0DfZ09FPwcw0J9w_yVvBxdQzyA8rwMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyMjQwsLM0tjR0Nj4lQBALJAJU0</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Pascale, Alessandra</creator><creator>Ganguly, Debasis</creator><creator>Tommasi, Pierpaolo</creator><creator>Deparis, Stephane</creator><scope>EVB</scope></search><sort><creationdate>20220616</creationdate><title>SELF-IMPROVING BAYESIAN NETWORK LEARNING</title><author>Pascale, Alessandra ; Ganguly, Debasis ; Tommasi, Pierpaolo ; Deparis, Stephane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022188693A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Pascale, Alessandra</creatorcontrib><creatorcontrib>Ganguly, Debasis</creatorcontrib><creatorcontrib>Tommasi, Pierpaolo</creatorcontrib><creatorcontrib>Deparis, Stephane</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pascale, Alessandra</au><au>Ganguly, Debasis</au><au>Tommasi, Pierpaolo</au><au>Deparis, Stephane</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SELF-IMPROVING BAYESIAN NETWORK LEARNING</title><date>2022-06-16</date><risdate>2022</risdate><abstract>A method, a computer system, and a computer program product for creating multiple models asynchronously is provided. Embodiments of the present invention may include receiving input data, wherein input data includes a full training dataset. Embodiments of the present invention may include building, asynchronously, one or more Bayesian network models using one or more portions of the input data on a first pipeline and building a free learning model using the full training dataset on a second pipeline. Embodiments of the present invention may include retrieving the one or more Bayesian network models from the first pipeline. Embodiments of the present invention may include retrieving the free learning model from the second pipeline.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022188693A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title SELF-IMPROVING BAYESIAN NETWORK LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Pascale,%20Alessandra&rft.date=2022-06-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022188693A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true