SELF-IMPROVING BAYESIAN NETWORK LEARNING
A method, a computer system, and a computer program product for creating multiple models asynchronously is provided. Embodiments of the present invention may include receiving input data, wherein input data includes a full training dataset. Embodiments of the present invention may include building,...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Pascale, Alessandra Ganguly, Debasis Tommasi, Pierpaolo Deparis, Stephane |
description | A method, a computer system, and a computer program product for creating multiple models asynchronously is provided. Embodiments of the present invention may include receiving input data, wherein input data includes a full training dataset. Embodiments of the present invention may include building, asynchronously, one or more Bayesian network models using one or more portions of the input data on a first pipeline and building a free learning model using the full training dataset on a second pipeline. Embodiments of the present invention may include retrieving the one or more Bayesian network models from the first pipeline. Embodiments of the present invention may include retrieving the free learning model from the second pipeline. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022188693A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022188693A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022188693A13</originalsourceid><addsrcrecordid>eNrjZNAIdvVx0_X0DQjyD_P0c1dwcox0DfZ09FPwcw0J9w_yVvBxdQzyA8rwMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyMjQwsLM0tjR0Nj4lQBALJAJU0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SELF-IMPROVING BAYESIAN NETWORK LEARNING</title><source>esp@cenet</source><creator>Pascale, Alessandra ; Ganguly, Debasis ; Tommasi, Pierpaolo ; Deparis, Stephane</creator><creatorcontrib>Pascale, Alessandra ; Ganguly, Debasis ; Tommasi, Pierpaolo ; Deparis, Stephane</creatorcontrib><description>A method, a computer system, and a computer program product for creating multiple models asynchronously is provided. Embodiments of the present invention may include receiving input data, wherein input data includes a full training dataset. Embodiments of the present invention may include building, asynchronously, one or more Bayesian network models using one or more portions of the input data on a first pipeline and building a free learning model using the full training dataset on a second pipeline. Embodiments of the present invention may include retrieving the one or more Bayesian network models from the first pipeline. Embodiments of the present invention may include retrieving the free learning model from the second pipeline.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220616&DB=EPODOC&CC=US&NR=2022188693A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220616&DB=EPODOC&CC=US&NR=2022188693A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pascale, Alessandra</creatorcontrib><creatorcontrib>Ganguly, Debasis</creatorcontrib><creatorcontrib>Tommasi, Pierpaolo</creatorcontrib><creatorcontrib>Deparis, Stephane</creatorcontrib><title>SELF-IMPROVING BAYESIAN NETWORK LEARNING</title><description>A method, a computer system, and a computer program product for creating multiple models asynchronously is provided. Embodiments of the present invention may include receiving input data, wherein input data includes a full training dataset. Embodiments of the present invention may include building, asynchronously, one or more Bayesian network models using one or more portions of the input data on a first pipeline and building a free learning model using the full training dataset on a second pipeline. Embodiments of the present invention may include retrieving the one or more Bayesian network models from the first pipeline. Embodiments of the present invention may include retrieving the free learning model from the second pipeline.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAIdvVx0_X0DQjyD_P0c1dwcox0DfZ09FPwcw0J9w_yVvBxdQzyA8rwMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyMjQwsLM0tjR0Nj4lQBALJAJU0</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Pascale, Alessandra</creator><creator>Ganguly, Debasis</creator><creator>Tommasi, Pierpaolo</creator><creator>Deparis, Stephane</creator><scope>EVB</scope></search><sort><creationdate>20220616</creationdate><title>SELF-IMPROVING BAYESIAN NETWORK LEARNING</title><author>Pascale, Alessandra ; Ganguly, Debasis ; Tommasi, Pierpaolo ; Deparis, Stephane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022188693A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Pascale, Alessandra</creatorcontrib><creatorcontrib>Ganguly, Debasis</creatorcontrib><creatorcontrib>Tommasi, Pierpaolo</creatorcontrib><creatorcontrib>Deparis, Stephane</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pascale, Alessandra</au><au>Ganguly, Debasis</au><au>Tommasi, Pierpaolo</au><au>Deparis, Stephane</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SELF-IMPROVING BAYESIAN NETWORK LEARNING</title><date>2022-06-16</date><risdate>2022</risdate><abstract>A method, a computer system, and a computer program product for creating multiple models asynchronously is provided. Embodiments of the present invention may include receiving input data, wherein input data includes a full training dataset. Embodiments of the present invention may include building, asynchronously, one or more Bayesian network models using one or more portions of the input data on a first pipeline and building a free learning model using the full training dataset on a second pipeline. Embodiments of the present invention may include retrieving the one or more Bayesian network models from the first pipeline. Embodiments of the present invention may include retrieving the free learning model from the second pipeline.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022188693A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | SELF-IMPROVING BAYESIAN NETWORK LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Pascale,%20Alessandra&rft.date=2022-06-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022188693A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |