NEURAL NETWORK COMPUTATION FOR EIGEN VALUE AND EIGEN VECTOR DECOMPOSITION OF MATRICES

A method performs eigen decomposition with an artificial deep neural network. The deep neural network receives an input covariance matrix. The deep neural network has a number of convolutional layers and also a number of pooling layers. The deep neural network predicts dominant eigen information of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: BABAHEIDARIAN, Parisa
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BABAHEIDARIAN, Parisa
description A method performs eigen decomposition with an artificial deep neural network. The deep neural network receives an input covariance matrix. The deep neural network has a number of convolutional layers and also a number of pooling layers. The deep neural network predicts dominant eigen information of the input covariance matrix, after applying the convolutional layers and the pooling layers to the input covariance matrix. The input covariance matrix may be a real-valued covariance matrix or a complex-valued covariance matrix having a concatenated pair of matrices, including a first matrix of real components and a second matrix of imaginary components. The dominant eigen information may be absolute values of a pair of dominant eigen values and sign information of the pair of dominant eigen values, and/or absolute values of a pair of dominant eigen vectors and sign information of the pair of dominant eigen vectors.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022188594A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022188594A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022188594A13</originalsourceid><addsrcrecordid>eNrjZAj1cw0NcvRR8HMNCfcP8lZw9vcNCA1xDPH091Nw8w9ScPV0d_VTCHP0CXVVcPRzgfFdnUOAki6uIOX-wZ5g5f5uCr6OIUGezq7BPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIyNDCwtTSxNHQmDhVADdEMYo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NEURAL NETWORK COMPUTATION FOR EIGEN VALUE AND EIGEN VECTOR DECOMPOSITION OF MATRICES</title><source>esp@cenet</source><creator>BABAHEIDARIAN, Parisa</creator><creatorcontrib>BABAHEIDARIAN, Parisa</creatorcontrib><description>A method performs eigen decomposition with an artificial deep neural network. The deep neural network receives an input covariance matrix. The deep neural network has a number of convolutional layers and also a number of pooling layers. The deep neural network predicts dominant eigen information of the input covariance matrix, after applying the convolutional layers and the pooling layers to the input covariance matrix. The input covariance matrix may be a real-valued covariance matrix or a complex-valued covariance matrix having a concatenated pair of matrices, including a first matrix of real components and a second matrix of imaginary components. The dominant eigen information may be absolute values of a pair of dominant eigen values and sign information of the pair of dominant eigen values, and/or absolute values of a pair of dominant eigen vectors and sign information of the pair of dominant eigen vectors.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220616&amp;DB=EPODOC&amp;CC=US&amp;NR=2022188594A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220616&amp;DB=EPODOC&amp;CC=US&amp;NR=2022188594A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BABAHEIDARIAN, Parisa</creatorcontrib><title>NEURAL NETWORK COMPUTATION FOR EIGEN VALUE AND EIGEN VECTOR DECOMPOSITION OF MATRICES</title><description>A method performs eigen decomposition with an artificial deep neural network. The deep neural network receives an input covariance matrix. The deep neural network has a number of convolutional layers and also a number of pooling layers. The deep neural network predicts dominant eigen information of the input covariance matrix, after applying the convolutional layers and the pooling layers to the input covariance matrix. The input covariance matrix may be a real-valued covariance matrix or a complex-valued covariance matrix having a concatenated pair of matrices, including a first matrix of real components and a second matrix of imaginary components. The dominant eigen information may be absolute values of a pair of dominant eigen values and sign information of the pair of dominant eigen values, and/or absolute values of a pair of dominant eigen vectors and sign information of the pair of dominant eigen vectors.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAj1cw0NcvRR8HMNCfcP8lZw9vcNCA1xDPH091Nw8w9ScPV0d_VTCHP0CXVVcPRzgfFdnUOAki6uIOX-wZ5g5f5uCr6OIUGezq7BPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIyNDCwtTSxNHQmDhVADdEMYo</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>BABAHEIDARIAN, Parisa</creator><scope>EVB</scope></search><sort><creationdate>20220616</creationdate><title>NEURAL NETWORK COMPUTATION FOR EIGEN VALUE AND EIGEN VECTOR DECOMPOSITION OF MATRICES</title><author>BABAHEIDARIAN, Parisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022188594A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BABAHEIDARIAN, Parisa</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BABAHEIDARIAN, Parisa</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NEURAL NETWORK COMPUTATION FOR EIGEN VALUE AND EIGEN VECTOR DECOMPOSITION OF MATRICES</title><date>2022-06-16</date><risdate>2022</risdate><abstract>A method performs eigen decomposition with an artificial deep neural network. The deep neural network receives an input covariance matrix. The deep neural network has a number of convolutional layers and also a number of pooling layers. The deep neural network predicts dominant eigen information of the input covariance matrix, after applying the convolutional layers and the pooling layers to the input covariance matrix. The input covariance matrix may be a real-valued covariance matrix or a complex-valued covariance matrix having a concatenated pair of matrices, including a first matrix of real components and a second matrix of imaginary components. The dominant eigen information may be absolute values of a pair of dominant eigen values and sign information of the pair of dominant eigen values, and/or absolute values of a pair of dominant eigen vectors and sign information of the pair of dominant eigen vectors.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022188594A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title NEURAL NETWORK COMPUTATION FOR EIGEN VALUE AND EIGEN VECTOR DECOMPOSITION OF MATRICES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BABAHEIDARIAN,%20Parisa&rft.date=2022-06-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022188594A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true