TASK-ADAPTIVE ARCHITECTURE FOR FEW-SHOT LEARNING

Meta-training an artificial neural cell for use in a few-shot learner, wherein the meta-training includes: executing a Neural Architecture Search (NAS) to automatically learn an architecture of the artificial neural cell; training adaptive controllers that are comprised in the architecture of the ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KARLINSKY, LEONID, DOVEH, SIVAN, SCHWARTZ, ELIYAHU
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KARLINSKY, LEONID
DOVEH, SIVAN
SCHWARTZ, ELIYAHU
description Meta-training an artificial neural cell for use in a few-shot learner, wherein the meta-training includes: executing a Neural Architecture Search (NAS) to automatically learn an architecture of the artificial neural cell; training adaptive controllers that are comprised in the architecture of the artificial neural cell, wherein each of the adaptive controllers is configured to adapt the architecture of the artificial neural cell to a few-shot learning task; and regressing the architecture of the artificial neural cell from support data of the few-shot learning task, through the adaptive controllers. Generating the few-shot learner based on the meta-trained artificial neural cell, to form an Artificial Neural Network (ANN).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022172036A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022172036A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022172036A13</originalsourceid><addsrcrecordid>eNrjZDAIcQz21nV0cQwI8QxzVXAMcvbwDHF1DgkNclVw8w9ScHMN1w328A9R8HF1DPLz9HPnYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkZGhuZGBsZmjobGxKkCAMl7JzI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TASK-ADAPTIVE ARCHITECTURE FOR FEW-SHOT LEARNING</title><source>esp@cenet</source><creator>KARLINSKY, LEONID ; DOVEH, SIVAN ; SCHWARTZ, ELIYAHU</creator><creatorcontrib>KARLINSKY, LEONID ; DOVEH, SIVAN ; SCHWARTZ, ELIYAHU</creatorcontrib><description>Meta-training an artificial neural cell for use in a few-shot learner, wherein the meta-training includes: executing a Neural Architecture Search (NAS) to automatically learn an architecture of the artificial neural cell; training adaptive controllers that are comprised in the architecture of the artificial neural cell, wherein each of the adaptive controllers is configured to adapt the architecture of the artificial neural cell to a few-shot learning task; and regressing the architecture of the artificial neural cell from support data of the few-shot learning task, through the adaptive controllers. Generating the few-shot learner based on the meta-trained artificial neural cell, to form an Artificial Neural Network (ANN).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220602&amp;DB=EPODOC&amp;CC=US&amp;NR=2022172036A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220602&amp;DB=EPODOC&amp;CC=US&amp;NR=2022172036A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KARLINSKY, LEONID</creatorcontrib><creatorcontrib>DOVEH, SIVAN</creatorcontrib><creatorcontrib>SCHWARTZ, ELIYAHU</creatorcontrib><title>TASK-ADAPTIVE ARCHITECTURE FOR FEW-SHOT LEARNING</title><description>Meta-training an artificial neural cell for use in a few-shot learner, wherein the meta-training includes: executing a Neural Architecture Search (NAS) to automatically learn an architecture of the artificial neural cell; training adaptive controllers that are comprised in the architecture of the artificial neural cell, wherein each of the adaptive controllers is configured to adapt the architecture of the artificial neural cell to a few-shot learning task; and regressing the architecture of the artificial neural cell from support data of the few-shot learning task, through the adaptive controllers. Generating the few-shot learner based on the meta-trained artificial neural cell, to form an Artificial Neural Network (ANN).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAIcQz21nV0cQwI8QxzVXAMcvbwDHF1DgkNclVw8w9ScHMN1w328A9R8HF1DPLz9HPnYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkZGhuZGBsZmjobGxKkCAMl7JzI</recordid><startdate>20220602</startdate><enddate>20220602</enddate><creator>KARLINSKY, LEONID</creator><creator>DOVEH, SIVAN</creator><creator>SCHWARTZ, ELIYAHU</creator><scope>EVB</scope></search><sort><creationdate>20220602</creationdate><title>TASK-ADAPTIVE ARCHITECTURE FOR FEW-SHOT LEARNING</title><author>KARLINSKY, LEONID ; DOVEH, SIVAN ; SCHWARTZ, ELIYAHU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022172036A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>KARLINSKY, LEONID</creatorcontrib><creatorcontrib>DOVEH, SIVAN</creatorcontrib><creatorcontrib>SCHWARTZ, ELIYAHU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KARLINSKY, LEONID</au><au>DOVEH, SIVAN</au><au>SCHWARTZ, ELIYAHU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TASK-ADAPTIVE ARCHITECTURE FOR FEW-SHOT LEARNING</title><date>2022-06-02</date><risdate>2022</risdate><abstract>Meta-training an artificial neural cell for use in a few-shot learner, wherein the meta-training includes: executing a Neural Architecture Search (NAS) to automatically learn an architecture of the artificial neural cell; training adaptive controllers that are comprised in the architecture of the artificial neural cell, wherein each of the adaptive controllers is configured to adapt the architecture of the artificial neural cell to a few-shot learning task; and regressing the architecture of the artificial neural cell from support data of the few-shot learning task, through the adaptive controllers. Generating the few-shot learner based on the meta-trained artificial neural cell, to form an Artificial Neural Network (ANN).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022172036A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title TASK-ADAPTIVE ARCHITECTURE FOR FEW-SHOT LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KARLINSKY,%20LEONID&rft.date=2022-06-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022172036A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true