TASK-ADAPTIVE ARCHITECTURE FOR FEW-SHOT LEARNING
Meta-training an artificial neural cell for use in a few-shot learner, wherein the meta-training includes: executing a Neural Architecture Search (NAS) to automatically learn an architecture of the artificial neural cell; training adaptive controllers that are comprised in the architecture of the ar...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KARLINSKY, LEONID DOVEH, SIVAN SCHWARTZ, ELIYAHU |
description | Meta-training an artificial neural cell for use in a few-shot learner, wherein the meta-training includes: executing a Neural Architecture Search (NAS) to automatically learn an architecture of the artificial neural cell; training adaptive controllers that are comprised in the architecture of the artificial neural cell, wherein each of the adaptive controllers is configured to adapt the architecture of the artificial neural cell to a few-shot learning task; and regressing the architecture of the artificial neural cell from support data of the few-shot learning task, through the adaptive controllers. Generating the few-shot learner based on the meta-trained artificial neural cell, to form an Artificial Neural Network (ANN). |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022172036A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022172036A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022172036A13</originalsourceid><addsrcrecordid>eNrjZDAIcQz21nV0cQwI8QxzVXAMcvbwDHF1DgkNclVw8w9ScHMN1w328A9R8HF1DPLz9HPnYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkZGhuZGBsZmjobGxKkCAMl7JzI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TASK-ADAPTIVE ARCHITECTURE FOR FEW-SHOT LEARNING</title><source>esp@cenet</source><creator>KARLINSKY, LEONID ; DOVEH, SIVAN ; SCHWARTZ, ELIYAHU</creator><creatorcontrib>KARLINSKY, LEONID ; DOVEH, SIVAN ; SCHWARTZ, ELIYAHU</creatorcontrib><description>Meta-training an artificial neural cell for use in a few-shot learner, wherein the meta-training includes: executing a Neural Architecture Search (NAS) to automatically learn an architecture of the artificial neural cell; training adaptive controllers that are comprised in the architecture of the artificial neural cell, wherein each of the adaptive controllers is configured to adapt the architecture of the artificial neural cell to a few-shot learning task; and regressing the architecture of the artificial neural cell from support data of the few-shot learning task, through the adaptive controllers. Generating the few-shot learner based on the meta-trained artificial neural cell, to form an Artificial Neural Network (ANN).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220602&DB=EPODOC&CC=US&NR=2022172036A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220602&DB=EPODOC&CC=US&NR=2022172036A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KARLINSKY, LEONID</creatorcontrib><creatorcontrib>DOVEH, SIVAN</creatorcontrib><creatorcontrib>SCHWARTZ, ELIYAHU</creatorcontrib><title>TASK-ADAPTIVE ARCHITECTURE FOR FEW-SHOT LEARNING</title><description>Meta-training an artificial neural cell for use in a few-shot learner, wherein the meta-training includes: executing a Neural Architecture Search (NAS) to automatically learn an architecture of the artificial neural cell; training adaptive controllers that are comprised in the architecture of the artificial neural cell, wherein each of the adaptive controllers is configured to adapt the architecture of the artificial neural cell to a few-shot learning task; and regressing the architecture of the artificial neural cell from support data of the few-shot learning task, through the adaptive controllers. Generating the few-shot learner based on the meta-trained artificial neural cell, to form an Artificial Neural Network (ANN).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAIcQz21nV0cQwI8QxzVXAMcvbwDHF1DgkNclVw8w9ScHMN1w328A9R8HF1DPLz9HPnYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkZGhuZGBsZmjobGxKkCAMl7JzI</recordid><startdate>20220602</startdate><enddate>20220602</enddate><creator>KARLINSKY, LEONID</creator><creator>DOVEH, SIVAN</creator><creator>SCHWARTZ, ELIYAHU</creator><scope>EVB</scope></search><sort><creationdate>20220602</creationdate><title>TASK-ADAPTIVE ARCHITECTURE FOR FEW-SHOT LEARNING</title><author>KARLINSKY, LEONID ; DOVEH, SIVAN ; SCHWARTZ, ELIYAHU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022172036A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>KARLINSKY, LEONID</creatorcontrib><creatorcontrib>DOVEH, SIVAN</creatorcontrib><creatorcontrib>SCHWARTZ, ELIYAHU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KARLINSKY, LEONID</au><au>DOVEH, SIVAN</au><au>SCHWARTZ, ELIYAHU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TASK-ADAPTIVE ARCHITECTURE FOR FEW-SHOT LEARNING</title><date>2022-06-02</date><risdate>2022</risdate><abstract>Meta-training an artificial neural cell for use in a few-shot learner, wherein the meta-training includes: executing a Neural Architecture Search (NAS) to automatically learn an architecture of the artificial neural cell; training adaptive controllers that are comprised in the architecture of the artificial neural cell, wherein each of the adaptive controllers is configured to adapt the architecture of the artificial neural cell to a few-shot learning task; and regressing the architecture of the artificial neural cell from support data of the few-shot learning task, through the adaptive controllers. Generating the few-shot learner based on the meta-trained artificial neural cell, to form an Artificial Neural Network (ANN).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022172036A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | TASK-ADAPTIVE ARCHITECTURE FOR FEW-SHOT LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KARLINSKY,%20LEONID&rft.date=2022-06-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022172036A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |