DATA PRE-PROCESSING FOR CROSS SENSOR AUTOMATIC WHITE BALANCE
Learning-based color correction (e.g., auto while balance (AWB)) procedures may be trained based on datasets from different sensors using a pre-processing procedure. Each input pixel may be converted into a sensor-independent representation through multiplication by a sensor-specific color conversio...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Sabo, Doron Osadchiy, Ilya |
description | Learning-based color correction (e.g., auto while balance (AWB)) procedures may be trained based on datasets from different sensors using a pre-processing procedure. Each input pixel may be converted into a sensor-independent representation through multiplication by a sensor-specific color conversion function (e.g., a 3×3 matrix). The sensor-specific color conversion function (e.g., the 3×3 matrix) may be obtained based on a sensor type. For example, the sensor-specific color conversion function, such as a 3×3 matrix, may be obtained by a corresponding sensor calibration procedure performed using laboratory images of a color checker chart subject to standard illuminants. Parameters of the sensor-specific color conversion function may be optimized in a chromaticity space. For instance, a sensor-specific 3×3 matrix for color conversion may be optimized using a distance in the chromaticity space between calibration data (e.g., calibration configurations) and sensor-independent targets (e.g., a target sensor-independent representation for each calibration configuration). |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022141438A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022141438A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022141438A13</originalsourceid><addsrcrecordid>eNrjZLBxcQxxVAgIctUNCPJ3dg0O9vRzV3DzD1JwDvIPDlYIdvULBnIcQ0P8fR1DPJ0Vwj08Q1wVnBx9HP2cXXkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkZGhiaGJsYWjoTFxqgCp1Spx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DATA PRE-PROCESSING FOR CROSS SENSOR AUTOMATIC WHITE BALANCE</title><source>esp@cenet</source><creator>Sabo, Doron ; Osadchiy, Ilya</creator><creatorcontrib>Sabo, Doron ; Osadchiy, Ilya</creatorcontrib><description>Learning-based color correction (e.g., auto while balance (AWB)) procedures may be trained based on datasets from different sensors using a pre-processing procedure. Each input pixel may be converted into a sensor-independent representation through multiplication by a sensor-specific color conversion function (e.g., a 3×3 matrix). The sensor-specific color conversion function (e.g., the 3×3 matrix) may be obtained based on a sensor type. For example, the sensor-specific color conversion function, such as a 3×3 matrix, may be obtained by a corresponding sensor calibration procedure performed using laboratory images of a color checker chart subject to standard illuminants. Parameters of the sensor-specific color conversion function may be optimized in a chromaticity space. For instance, a sensor-specific 3×3 matrix for color conversion may be optimized using a distance in the chromaticity space between calibration data (e.g., calibration configurations) and sensor-independent targets (e.g., a target sensor-independent representation for each calibration configuration).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220505&DB=EPODOC&CC=US&NR=2022141438A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220505&DB=EPODOC&CC=US&NR=2022141438A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sabo, Doron</creatorcontrib><creatorcontrib>Osadchiy, Ilya</creatorcontrib><title>DATA PRE-PROCESSING FOR CROSS SENSOR AUTOMATIC WHITE BALANCE</title><description>Learning-based color correction (e.g., auto while balance (AWB)) procedures may be trained based on datasets from different sensors using a pre-processing procedure. Each input pixel may be converted into a sensor-independent representation through multiplication by a sensor-specific color conversion function (e.g., a 3×3 matrix). The sensor-specific color conversion function (e.g., the 3×3 matrix) may be obtained based on a sensor type. For example, the sensor-specific color conversion function, such as a 3×3 matrix, may be obtained by a corresponding sensor calibration procedure performed using laboratory images of a color checker chart subject to standard illuminants. Parameters of the sensor-specific color conversion function may be optimized in a chromaticity space. For instance, a sensor-specific 3×3 matrix for color conversion may be optimized using a distance in the chromaticity space between calibration data (e.g., calibration configurations) and sensor-independent targets (e.g., a target sensor-independent representation for each calibration configuration).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBxcQxxVAgIctUNCPJ3dg0O9vRzV3DzD1JwDvIPDlYIdvULBnIcQ0P8fR1DPJ0Vwj08Q1wVnBx9HP2cXXkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkZGhiaGJsYWjoTFxqgCp1Spx</recordid><startdate>20220505</startdate><enddate>20220505</enddate><creator>Sabo, Doron</creator><creator>Osadchiy, Ilya</creator><scope>EVB</scope></search><sort><creationdate>20220505</creationdate><title>DATA PRE-PROCESSING FOR CROSS SENSOR AUTOMATIC WHITE BALANCE</title><author>Sabo, Doron ; Osadchiy, Ilya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022141438A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><toplevel>online_resources</toplevel><creatorcontrib>Sabo, Doron</creatorcontrib><creatorcontrib>Osadchiy, Ilya</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sabo, Doron</au><au>Osadchiy, Ilya</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DATA PRE-PROCESSING FOR CROSS SENSOR AUTOMATIC WHITE BALANCE</title><date>2022-05-05</date><risdate>2022</risdate><abstract>Learning-based color correction (e.g., auto while balance (AWB)) procedures may be trained based on datasets from different sensors using a pre-processing procedure. Each input pixel may be converted into a sensor-independent representation through multiplication by a sensor-specific color conversion function (e.g., a 3×3 matrix). The sensor-specific color conversion function (e.g., the 3×3 matrix) may be obtained based on a sensor type. For example, the sensor-specific color conversion function, such as a 3×3 matrix, may be obtained by a corresponding sensor calibration procedure performed using laboratory images of a color checker chart subject to standard illuminants. Parameters of the sensor-specific color conversion function may be optimized in a chromaticity space. For instance, a sensor-specific 3×3 matrix for color conversion may be optimized using a distance in the chromaticity space between calibration data (e.g., calibration configurations) and sensor-independent targets (e.g., a target sensor-independent representation for each calibration configuration).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022141438A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PICTORIAL COMMUNICATION, e.g. TELEVISION |
title | DATA PRE-PROCESSING FOR CROSS SENSOR AUTOMATIC WHITE BALANCE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sabo,%20Doron&rft.date=2022-05-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022141438A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |