DATA PRE-PROCESSING FOR CROSS SENSOR AUTOMATIC WHITE BALANCE

Learning-based color correction (e.g., auto while balance (AWB)) procedures may be trained based on datasets from different sensors using a pre-processing procedure. Each input pixel may be converted into a sensor-independent representation through multiplication by a sensor-specific color conversio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sabo, Doron, Osadchiy, Ilya
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Sabo, Doron
Osadchiy, Ilya
description Learning-based color correction (e.g., auto while balance (AWB)) procedures may be trained based on datasets from different sensors using a pre-processing procedure. Each input pixel may be converted into a sensor-independent representation through multiplication by a sensor-specific color conversion function (e.g., a 3×3 matrix). The sensor-specific color conversion function (e.g., the 3×3 matrix) may be obtained based on a sensor type. For example, the sensor-specific color conversion function, such as a 3×3 matrix, may be obtained by a corresponding sensor calibration procedure performed using laboratory images of a color checker chart subject to standard illuminants. Parameters of the sensor-specific color conversion function may be optimized in a chromaticity space. For instance, a sensor-specific 3×3 matrix for color conversion may be optimized using a distance in the chromaticity space between calibration data (e.g., calibration configurations) and sensor-independent targets (e.g., a target sensor-independent representation for each calibration configuration).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022141438A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022141438A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022141438A13</originalsourceid><addsrcrecordid>eNrjZLBxcQxxVAgIctUNCPJ3dg0O9vRzV3DzD1JwDvIPDlYIdvULBnIcQ0P8fR1DPJ0Vwj08Q1wVnBx9HP2cXXkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkZGhiaGJsYWjoTFxqgCp1Spx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DATA PRE-PROCESSING FOR CROSS SENSOR AUTOMATIC WHITE BALANCE</title><source>esp@cenet</source><creator>Sabo, Doron ; Osadchiy, Ilya</creator><creatorcontrib>Sabo, Doron ; Osadchiy, Ilya</creatorcontrib><description>Learning-based color correction (e.g., auto while balance (AWB)) procedures may be trained based on datasets from different sensors using a pre-processing procedure. Each input pixel may be converted into a sensor-independent representation through multiplication by a sensor-specific color conversion function (e.g., a 3×3 matrix). The sensor-specific color conversion function (e.g., the 3×3 matrix) may be obtained based on a sensor type. For example, the sensor-specific color conversion function, such as a 3×3 matrix, may be obtained by a corresponding sensor calibration procedure performed using laboratory images of a color checker chart subject to standard illuminants. Parameters of the sensor-specific color conversion function may be optimized in a chromaticity space. For instance, a sensor-specific 3×3 matrix for color conversion may be optimized using a distance in the chromaticity space between calibration data (e.g., calibration configurations) and sensor-independent targets (e.g., a target sensor-independent representation for each calibration configuration).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220505&amp;DB=EPODOC&amp;CC=US&amp;NR=2022141438A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220505&amp;DB=EPODOC&amp;CC=US&amp;NR=2022141438A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sabo, Doron</creatorcontrib><creatorcontrib>Osadchiy, Ilya</creatorcontrib><title>DATA PRE-PROCESSING FOR CROSS SENSOR AUTOMATIC WHITE BALANCE</title><description>Learning-based color correction (e.g., auto while balance (AWB)) procedures may be trained based on datasets from different sensors using a pre-processing procedure. Each input pixel may be converted into a sensor-independent representation through multiplication by a sensor-specific color conversion function (e.g., a 3×3 matrix). The sensor-specific color conversion function (e.g., the 3×3 matrix) may be obtained based on a sensor type. For example, the sensor-specific color conversion function, such as a 3×3 matrix, may be obtained by a corresponding sensor calibration procedure performed using laboratory images of a color checker chart subject to standard illuminants. Parameters of the sensor-specific color conversion function may be optimized in a chromaticity space. For instance, a sensor-specific 3×3 matrix for color conversion may be optimized using a distance in the chromaticity space between calibration data (e.g., calibration configurations) and sensor-independent targets (e.g., a target sensor-independent representation for each calibration configuration).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBxcQxxVAgIctUNCPJ3dg0O9vRzV3DzD1JwDvIPDlYIdvULBnIcQ0P8fR1DPJ0Vwj08Q1wVnBx9HP2cXXkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkZGhiaGJsYWjoTFxqgCp1Spx</recordid><startdate>20220505</startdate><enddate>20220505</enddate><creator>Sabo, Doron</creator><creator>Osadchiy, Ilya</creator><scope>EVB</scope></search><sort><creationdate>20220505</creationdate><title>DATA PRE-PROCESSING FOR CROSS SENSOR AUTOMATIC WHITE BALANCE</title><author>Sabo, Doron ; Osadchiy, Ilya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022141438A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><toplevel>online_resources</toplevel><creatorcontrib>Sabo, Doron</creatorcontrib><creatorcontrib>Osadchiy, Ilya</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sabo, Doron</au><au>Osadchiy, Ilya</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DATA PRE-PROCESSING FOR CROSS SENSOR AUTOMATIC WHITE BALANCE</title><date>2022-05-05</date><risdate>2022</risdate><abstract>Learning-based color correction (e.g., auto while balance (AWB)) procedures may be trained based on datasets from different sensors using a pre-processing procedure. Each input pixel may be converted into a sensor-independent representation through multiplication by a sensor-specific color conversion function (e.g., a 3×3 matrix). The sensor-specific color conversion function (e.g., the 3×3 matrix) may be obtained based on a sensor type. For example, the sensor-specific color conversion function, such as a 3×3 matrix, may be obtained by a corresponding sensor calibration procedure performed using laboratory images of a color checker chart subject to standard illuminants. Parameters of the sensor-specific color conversion function may be optimized in a chromaticity space. For instance, a sensor-specific 3×3 matrix for color conversion may be optimized using a distance in the chromaticity space between calibration data (e.g., calibration configurations) and sensor-independent targets (e.g., a target sensor-independent representation for each calibration configuration).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022141438A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PICTORIAL COMMUNICATION, e.g. TELEVISION
title DATA PRE-PROCESSING FOR CROSS SENSOR AUTOMATIC WHITE BALANCE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sabo,%20Doron&rft.date=2022-05-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022141438A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true