SYSTEM AND METHOD FOR CONTENT COMPREHENSION AND RESPONSE

A method, apparatus and system for training an embedding space for content comprehension and response includes, for each layer of a hierarchical taxonomy having at least two layers including respective words resulting in layers of varying complexity, determining a set of words associated with a laye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DIVAKARAN, Ajay, YAO, Yi, SIKKA, Karan, NUNN, Stephanie, RUTHERFORD-QUACH, Sara, HOSTETLER, Jesse, SAHU, Pritish, COGSWELL, Michael A, GONG, Yunye
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DIVAKARAN, Ajay
YAO, Yi
SIKKA, Karan
NUNN, Stephanie
RUTHERFORD-QUACH, Sara
HOSTETLER, Jesse
SAHU, Pritish
COGSWELL, Michael A
GONG, Yunye
description A method, apparatus and system for training an embedding space for content comprehension and response includes, for each layer of a hierarchical taxonomy having at least two layers including respective words resulting in layers of varying complexity, determining a set of words associated with a layer of the hierarchical taxonomy, determining a question answer pair based on a question generated using at least one word of the set of words and at least one content domain, determining a vector representation for the generated question and for content related to the at least one content domain of the question answer pair, and embedding the question vector representation and the content vector representations into a common embedding space where vector representations that are related, are closer in the embedding space than unrelated embedded vector representations. Requests for content can then be fulfilled using the trained, common embedding space.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022138433A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022138433A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022138433A13</originalsourceid><addsrcrecordid>eNrjZLAIjgwOcfVVcPRzUfB1DfHwd1Fw8w9ScPb3C3H1CwHSvgFBrh6ufsGe_n5gRUGuwQH-fsGuPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIyNDYwsTY2NHQmDhVABM4KYI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR CONTENT COMPREHENSION AND RESPONSE</title><source>esp@cenet</source><creator>DIVAKARAN, Ajay ; YAO, Yi ; SIKKA, Karan ; NUNN, Stephanie ; RUTHERFORD-QUACH, Sara ; HOSTETLER, Jesse ; SAHU, Pritish ; COGSWELL, Michael A ; GONG, Yunye</creator><creatorcontrib>DIVAKARAN, Ajay ; YAO, Yi ; SIKKA, Karan ; NUNN, Stephanie ; RUTHERFORD-QUACH, Sara ; HOSTETLER, Jesse ; SAHU, Pritish ; COGSWELL, Michael A ; GONG, Yunye</creatorcontrib><description>A method, apparatus and system for training an embedding space for content comprehension and response includes, for each layer of a hierarchical taxonomy having at least two layers including respective words resulting in layers of varying complexity, determining a set of words associated with a layer of the hierarchical taxonomy, determining a question answer pair based on a question generated using at least one word of the set of words and at least one content domain, determining a vector representation for the generated question and for content related to the at least one content domain of the question answer pair, and embedding the question vector representation and the content vector representations into a common embedding space where vector representations that are related, are closer in the embedding space than unrelated embedded vector representations. Requests for content can then be fulfilled using the trained, common embedding space.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220505&amp;DB=EPODOC&amp;CC=US&amp;NR=2022138433A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220505&amp;DB=EPODOC&amp;CC=US&amp;NR=2022138433A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DIVAKARAN, Ajay</creatorcontrib><creatorcontrib>YAO, Yi</creatorcontrib><creatorcontrib>SIKKA, Karan</creatorcontrib><creatorcontrib>NUNN, Stephanie</creatorcontrib><creatorcontrib>RUTHERFORD-QUACH, Sara</creatorcontrib><creatorcontrib>HOSTETLER, Jesse</creatorcontrib><creatorcontrib>SAHU, Pritish</creatorcontrib><creatorcontrib>COGSWELL, Michael A</creatorcontrib><creatorcontrib>GONG, Yunye</creatorcontrib><title>SYSTEM AND METHOD FOR CONTENT COMPREHENSION AND RESPONSE</title><description>A method, apparatus and system for training an embedding space for content comprehension and response includes, for each layer of a hierarchical taxonomy having at least two layers including respective words resulting in layers of varying complexity, determining a set of words associated with a layer of the hierarchical taxonomy, determining a question answer pair based on a question generated using at least one word of the set of words and at least one content domain, determining a vector representation for the generated question and for content related to the at least one content domain of the question answer pair, and embedding the question vector representation and the content vector representations into a common embedding space where vector representations that are related, are closer in the embedding space than unrelated embedded vector representations. Requests for content can then be fulfilled using the trained, common embedding space.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAIjgwOcfVVcPRzUfB1DfHwd1Fw8w9ScPb3C3H1CwHSvgFBrh6ufsGe_n5gRUGuwQH-fsGuPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIyNDYwsTY2NHQmDhVABM4KYI</recordid><startdate>20220505</startdate><enddate>20220505</enddate><creator>DIVAKARAN, Ajay</creator><creator>YAO, Yi</creator><creator>SIKKA, Karan</creator><creator>NUNN, Stephanie</creator><creator>RUTHERFORD-QUACH, Sara</creator><creator>HOSTETLER, Jesse</creator><creator>SAHU, Pritish</creator><creator>COGSWELL, Michael A</creator><creator>GONG, Yunye</creator><scope>EVB</scope></search><sort><creationdate>20220505</creationdate><title>SYSTEM AND METHOD FOR CONTENT COMPREHENSION AND RESPONSE</title><author>DIVAKARAN, Ajay ; YAO, Yi ; SIKKA, Karan ; NUNN, Stephanie ; RUTHERFORD-QUACH, Sara ; HOSTETLER, Jesse ; SAHU, Pritish ; COGSWELL, Michael A ; GONG, Yunye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022138433A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DIVAKARAN, Ajay</creatorcontrib><creatorcontrib>YAO, Yi</creatorcontrib><creatorcontrib>SIKKA, Karan</creatorcontrib><creatorcontrib>NUNN, Stephanie</creatorcontrib><creatorcontrib>RUTHERFORD-QUACH, Sara</creatorcontrib><creatorcontrib>HOSTETLER, Jesse</creatorcontrib><creatorcontrib>SAHU, Pritish</creatorcontrib><creatorcontrib>COGSWELL, Michael A</creatorcontrib><creatorcontrib>GONG, Yunye</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DIVAKARAN, Ajay</au><au>YAO, Yi</au><au>SIKKA, Karan</au><au>NUNN, Stephanie</au><au>RUTHERFORD-QUACH, Sara</au><au>HOSTETLER, Jesse</au><au>SAHU, Pritish</au><au>COGSWELL, Michael A</au><au>GONG, Yunye</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR CONTENT COMPREHENSION AND RESPONSE</title><date>2022-05-05</date><risdate>2022</risdate><abstract>A method, apparatus and system for training an embedding space for content comprehension and response includes, for each layer of a hierarchical taxonomy having at least two layers including respective words resulting in layers of varying complexity, determining a set of words associated with a layer of the hierarchical taxonomy, determining a question answer pair based on a question generated using at least one word of the set of words and at least one content domain, determining a vector representation for the generated question and for content related to the at least one content domain of the question answer pair, and embedding the question vector representation and the content vector representations into a common embedding space where vector representations that are related, are closer in the embedding space than unrelated embedded vector representations. Requests for content can then be fulfilled using the trained, common embedding space.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022138433A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title SYSTEM AND METHOD FOR CONTENT COMPREHENSION AND RESPONSE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DIVAKARAN,%20Ajay&rft.date=2022-05-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022138433A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true