APPARATUS AND METHOD OF IMAGE CLUSTERING

An apparatus includes a modified image generator generating modified images by modifying each unlabeled image, a pre-trainer to generate a feature vector for each modified image by using an artificial neural network-based encoder and train the encoder based on the feature vector for each modified im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KIM, Byoung Jip, KWON, Yeong Dae, YOON, Il Joo, PARK, Du Won, CHOO, Jin Ho
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KIM, Byoung Jip
KWON, Yeong Dae
YOON, Il Joo
PARK, Du Won
CHOO, Jin Ho
description An apparatus includes a modified image generator generating modified images by modifying each unlabeled image, a pre-trainer to generate a feature vector for each modified image by using an artificial neural network-based encoder and train the encoder based on the feature vector for each modified image, a pseudo-label generator to generate a feature vector for each unlabeled training image, cluster the training images based on the feature vector for each training image, and generate a pseudo-label for at least one training image among the training images based on the clustering result, and a further trainer to generate a predicted label by using the trained encoder and a classification model including a classifier to generate a predicted label for an image input to the trained encoder based on a feature vector, and train the classification model based on the pseudo-label and predicted label for the at least one training image.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022129705A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022129705A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022129705A13</originalsourceid><addsrcrecordid>eNrjZNBwDAhwDHIMCQ1WcPRzUfB1DfHwd1Hwd1Pw9HV0d1Vw9gkNDnEN8vRz52FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGRoZGluYGpo6GxsSpAgCG9iTc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>APPARATUS AND METHOD OF IMAGE CLUSTERING</title><source>esp@cenet</source><creator>KIM, Byoung Jip ; KWON, Yeong Dae ; YOON, Il Joo ; PARK, Du Won ; CHOO, Jin Ho</creator><creatorcontrib>KIM, Byoung Jip ; KWON, Yeong Dae ; YOON, Il Joo ; PARK, Du Won ; CHOO, Jin Ho</creatorcontrib><description>An apparatus includes a modified image generator generating modified images by modifying each unlabeled image, a pre-trainer to generate a feature vector for each modified image by using an artificial neural network-based encoder and train the encoder based on the feature vector for each modified image, a pseudo-label generator to generate a feature vector for each unlabeled training image, cluster the training images based on the feature vector for each training image, and generate a pseudo-label for at least one training image among the training images based on the clustering result, and a further trainer to generate a predicted label by using the trained encoder and a classification model including a classifier to generate a predicted label for an image input to the trained encoder based on a feature vector, and train the classification model based on the pseudo-label and predicted label for the at least one training image.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220428&amp;DB=EPODOC&amp;CC=US&amp;NR=2022129705A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25547,76298</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220428&amp;DB=EPODOC&amp;CC=US&amp;NR=2022129705A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KIM, Byoung Jip</creatorcontrib><creatorcontrib>KWON, Yeong Dae</creatorcontrib><creatorcontrib>YOON, Il Joo</creatorcontrib><creatorcontrib>PARK, Du Won</creatorcontrib><creatorcontrib>CHOO, Jin Ho</creatorcontrib><title>APPARATUS AND METHOD OF IMAGE CLUSTERING</title><description>An apparatus includes a modified image generator generating modified images by modifying each unlabeled image, a pre-trainer to generate a feature vector for each modified image by using an artificial neural network-based encoder and train the encoder based on the feature vector for each modified image, a pseudo-label generator to generate a feature vector for each unlabeled training image, cluster the training images based on the feature vector for each training image, and generate a pseudo-label for at least one training image among the training images based on the clustering result, and a further trainer to generate a predicted label by using the trained encoder and a classification model including a classifier to generate a predicted label for an image input to the trained encoder based on a feature vector, and train the classification model based on the pseudo-label and predicted label for the at least one training image.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBwDAhwDHIMCQ1WcPRzUfB1DfHwd1Hwd1Pw9HV0d1Vw9gkNDnEN8vRz52FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGRoZGluYGpo6GxsSpAgCG9iTc</recordid><startdate>20220428</startdate><enddate>20220428</enddate><creator>KIM, Byoung Jip</creator><creator>KWON, Yeong Dae</creator><creator>YOON, Il Joo</creator><creator>PARK, Du Won</creator><creator>CHOO, Jin Ho</creator><scope>EVB</scope></search><sort><creationdate>20220428</creationdate><title>APPARATUS AND METHOD OF IMAGE CLUSTERING</title><author>KIM, Byoung Jip ; KWON, Yeong Dae ; YOON, Il Joo ; PARK, Du Won ; CHOO, Jin Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022129705A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>KIM, Byoung Jip</creatorcontrib><creatorcontrib>KWON, Yeong Dae</creatorcontrib><creatorcontrib>YOON, Il Joo</creatorcontrib><creatorcontrib>PARK, Du Won</creatorcontrib><creatorcontrib>CHOO, Jin Ho</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KIM, Byoung Jip</au><au>KWON, Yeong Dae</au><au>YOON, Il Joo</au><au>PARK, Du Won</au><au>CHOO, Jin Ho</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>APPARATUS AND METHOD OF IMAGE CLUSTERING</title><date>2022-04-28</date><risdate>2022</risdate><abstract>An apparatus includes a modified image generator generating modified images by modifying each unlabeled image, a pre-trainer to generate a feature vector for each modified image by using an artificial neural network-based encoder and train the encoder based on the feature vector for each modified image, a pseudo-label generator to generate a feature vector for each unlabeled training image, cluster the training images based on the feature vector for each training image, and generate a pseudo-label for at least one training image among the training images based on the clustering result, and a further trainer to generate a predicted label by using the trained encoder and a classification model including a classifier to generate a predicted label for an image input to the trained encoder based on a feature vector, and train the classification model based on the pseudo-label and predicted label for the at least one training image.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022129705A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title APPARATUS AND METHOD OF IMAGE CLUSTERING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KIM,%20Byoung%20Jip&rft.date=2022-04-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022129705A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true