ANALYSIS AND DEEP LEARNING MODELING OF SENSOR-BASED OBJECT DETECTION DATA IN BOUNDED AQUATIC ENVIRONMENTS
Techniques for analysis and deep learning modeling of sensor-based object detection data in bounded aquatic environments are described, including capturing an image from a sensor disposed substantially above a waterline, the sensor being housed in a structure electrically coupled to a light housing,...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Barton, Chris Morris, Nigel Lau, Jonathan Chei-Feung Narasimhan, Srinivasa Rouillac, Nichole Suzanne Hubbard, Robin Nicholas |
description | Techniques for analysis and deep learning modeling of sensor-based object detection data in bounded aquatic environments are described, including capturing an image from a sensor disposed substantially above a waterline, the sensor being housed in a structure electrically coupled to a light housing, converting the image into data, the data being digitally encoded, evaluating the data to separate background data from foreground data, generating tracking data from the data after the background data is removed, the tracking data being evaluated to determine whether a head or a body are detected by comparing the tracking data to classifier data, tracking the head or the body relative to the waterline if the head or the body are detected in the tracking data, and determining a state associated with the head or the body. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022122380A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022122380A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022122380A13</originalsourceid><addsrcrecordid>eNqNysEKgkAQgGEvHaJ6h4HOgq6XrqM71obOlLMKnURigyBKsPcngx6g0_8fvmV0R8bqok4B2YIlOkFF2LDjPdRiqfqOlKDEKk2co5IFyY9U-Fn7OU4YLHoEx5BLy3YGeG7RuwKIO9cI18Re19HiNjymsPl1FW1L8sUhDuOrD9M4XMMzvPtWTWJMaky2SzDN_lMf9a82dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ANALYSIS AND DEEP LEARNING MODELING OF SENSOR-BASED OBJECT DETECTION DATA IN BOUNDED AQUATIC ENVIRONMENTS</title><source>esp@cenet</source><creator>Barton, Chris ; Morris, Nigel ; Lau, Jonathan Chei-Feung ; Narasimhan, Srinivasa ; Rouillac, Nichole Suzanne ; Hubbard, Robin Nicholas</creator><creatorcontrib>Barton, Chris ; Morris, Nigel ; Lau, Jonathan Chei-Feung ; Narasimhan, Srinivasa ; Rouillac, Nichole Suzanne ; Hubbard, Robin Nicholas</creatorcontrib><description>Techniques for analysis and deep learning modeling of sensor-based object detection data in bounded aquatic environments are described, including capturing an image from a sensor disposed substantially above a waterline, the sensor being housed in a structure electrically coupled to a light housing, converting the image into data, the data being digitally encoded, evaluating the data to separate background data from foreground data, generating tracking data from the data after the background data is removed, the tracking data being evaluated to determine whether a head or a body are detected by comparing the tracking data to classifier data, tracking the head or the body relative to the waterline if the head or the body are detected in the tracking data, and determining a state associated with the head or the body.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220421&DB=EPODOC&CC=US&NR=2022122380A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220421&DB=EPODOC&CC=US&NR=2022122380A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Barton, Chris</creatorcontrib><creatorcontrib>Morris, Nigel</creatorcontrib><creatorcontrib>Lau, Jonathan Chei-Feung</creatorcontrib><creatorcontrib>Narasimhan, Srinivasa</creatorcontrib><creatorcontrib>Rouillac, Nichole Suzanne</creatorcontrib><creatorcontrib>Hubbard, Robin Nicholas</creatorcontrib><title>ANALYSIS AND DEEP LEARNING MODELING OF SENSOR-BASED OBJECT DETECTION DATA IN BOUNDED AQUATIC ENVIRONMENTS</title><description>Techniques for analysis and deep learning modeling of sensor-based object detection data in bounded aquatic environments are described, including capturing an image from a sensor disposed substantially above a waterline, the sensor being housed in a structure electrically coupled to a light housing, converting the image into data, the data being digitally encoded, evaluating the data to separate background data from foreground data, generating tracking data from the data after the background data is removed, the tracking data being evaluated to determine whether a head or a body are detected by comparing the tracking data to classifier data, tracking the head or the body relative to the waterline if the head or the body are detected in the tracking data, and determining a state associated with the head or the body.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNysEKgkAQgGEvHaJ6h4HOgq6XrqM71obOlLMKnURigyBKsPcngx6g0_8fvmV0R8bqok4B2YIlOkFF2LDjPdRiqfqOlKDEKk2co5IFyY9U-Fn7OU4YLHoEx5BLy3YGeG7RuwKIO9cI18Re19HiNjymsPl1FW1L8sUhDuOrD9M4XMMzvPtWTWJMaky2SzDN_lMf9a82dw</recordid><startdate>20220421</startdate><enddate>20220421</enddate><creator>Barton, Chris</creator><creator>Morris, Nigel</creator><creator>Lau, Jonathan Chei-Feung</creator><creator>Narasimhan, Srinivasa</creator><creator>Rouillac, Nichole Suzanne</creator><creator>Hubbard, Robin Nicholas</creator><scope>EVB</scope></search><sort><creationdate>20220421</creationdate><title>ANALYSIS AND DEEP LEARNING MODELING OF SENSOR-BASED OBJECT DETECTION DATA IN BOUNDED AQUATIC ENVIRONMENTS</title><author>Barton, Chris ; Morris, Nigel ; Lau, Jonathan Chei-Feung ; Narasimhan, Srinivasa ; Rouillac, Nichole Suzanne ; Hubbard, Robin Nicholas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022122380A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Barton, Chris</creatorcontrib><creatorcontrib>Morris, Nigel</creatorcontrib><creatorcontrib>Lau, Jonathan Chei-Feung</creatorcontrib><creatorcontrib>Narasimhan, Srinivasa</creatorcontrib><creatorcontrib>Rouillac, Nichole Suzanne</creatorcontrib><creatorcontrib>Hubbard, Robin Nicholas</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barton, Chris</au><au>Morris, Nigel</au><au>Lau, Jonathan Chei-Feung</au><au>Narasimhan, Srinivasa</au><au>Rouillac, Nichole Suzanne</au><au>Hubbard, Robin Nicholas</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ANALYSIS AND DEEP LEARNING MODELING OF SENSOR-BASED OBJECT DETECTION DATA IN BOUNDED AQUATIC ENVIRONMENTS</title><date>2022-04-21</date><risdate>2022</risdate><abstract>Techniques for analysis and deep learning modeling of sensor-based object detection data in bounded aquatic environments are described, including capturing an image from a sensor disposed substantially above a waterline, the sensor being housed in a structure electrically coupled to a light housing, converting the image into data, the data being digitally encoded, evaluating the data to separate background data from foreground data, generating tracking data from the data after the background data is removed, the tracking data being evaluated to determine whether a head or a body are detected by comparing the tracking data to classifier data, tracking the head or the body relative to the waterline if the head or the body are detected in the tracking data, and determining a state associated with the head or the body.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022122380A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING PHYSICS |
title | ANALYSIS AND DEEP LEARNING MODELING OF SENSOR-BASED OBJECT DETECTION DATA IN BOUNDED AQUATIC ENVIRONMENTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Barton,%20Chris&rft.date=2022-04-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022122380A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |