PREDICTIVE ANOMALY DETECTION FRAMEWORK

Embodiments of the invention are directed to techniques for detecting anomalous values in data streams using forecasting models. In some embodiments, a computer can receive a value of a data stream comprising a plurality of data values, where the received value corresponds to a time interval and pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Prabanantham, Subash, Ojha, Himanshu, Valamjee, Vipul, Shakir, Abdul Hadi, Chanda, Raghuveer
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Prabanantham, Subash
Ojha, Himanshu
Valamjee, Vipul
Shakir, Abdul Hadi
Chanda, Raghuveer
description Embodiments of the invention are directed to techniques for detecting anomalous values in data streams using forecasting models. In some embodiments, a computer can receive a value of a data stream comprising a plurality of data values, where the received value corresponds to a time interval and previously received values each correspond to a previous time interval. Models can be selected based on the time interval, where each of the models has a different periodicity. For each of the selected models, the computer may generate a score by generating a prediction value based on the model and generating the score based on the prediction value and the received value. A final score can then be generated based on the scores. Next, a score threshold can be generated. If the final score exceeds the score threshold, the computer may generate a notification that indicates that the data value is an anomaly.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022114074A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022114074A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022114074A13</originalsourceid><addsrcrecordid>eNrjZFALCHJ18XQO8QxzVXD08_d19IlUcHENcQWK-PspuAU5-rqG-wd58zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjI0NDEwNzE0dDY-JUAQBkRCSc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PREDICTIVE ANOMALY DETECTION FRAMEWORK</title><source>esp@cenet</source><creator>Prabanantham, Subash ; Ojha, Himanshu ; Valamjee, Vipul ; Shakir, Abdul Hadi ; Chanda, Raghuveer</creator><creatorcontrib>Prabanantham, Subash ; Ojha, Himanshu ; Valamjee, Vipul ; Shakir, Abdul Hadi ; Chanda, Raghuveer</creatorcontrib><description>Embodiments of the invention are directed to techniques for detecting anomalous values in data streams using forecasting models. In some embodiments, a computer can receive a value of a data stream comprising a plurality of data values, where the received value corresponds to a time interval and previously received values each correspond to a previous time interval. Models can be selected based on the time interval, where each of the models has a different periodicity. For each of the selected models, the computer may generate a score by generating a prediction value based on the model and generating the score based on the prediction value and the received value. A final score can then be generated based on the scores. Next, a score threshold can be generated. If the final score exceeds the score threshold, the computer may generate a notification that indicates that the data value is an anomaly.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220414&amp;DB=EPODOC&amp;CC=US&amp;NR=2022114074A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220414&amp;DB=EPODOC&amp;CC=US&amp;NR=2022114074A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Prabanantham, Subash</creatorcontrib><creatorcontrib>Ojha, Himanshu</creatorcontrib><creatorcontrib>Valamjee, Vipul</creatorcontrib><creatorcontrib>Shakir, Abdul Hadi</creatorcontrib><creatorcontrib>Chanda, Raghuveer</creatorcontrib><title>PREDICTIVE ANOMALY DETECTION FRAMEWORK</title><description>Embodiments of the invention are directed to techniques for detecting anomalous values in data streams using forecasting models. In some embodiments, a computer can receive a value of a data stream comprising a plurality of data values, where the received value corresponds to a time interval and previously received values each correspond to a previous time interval. Models can be selected based on the time interval, where each of the models has a different periodicity. For each of the selected models, the computer may generate a score by generating a prediction value based on the model and generating the score based on the prediction value and the received value. A final score can then be generated based on the scores. Next, a score threshold can be generated. If the final score exceeds the score threshold, the computer may generate a notification that indicates that the data value is an anomaly.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFALCHJ18XQO8QxzVXD08_d19IlUcHENcQWK-PspuAU5-rqG-wd58zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjI0NDEwNzE0dDY-JUAQBkRCSc</recordid><startdate>20220414</startdate><enddate>20220414</enddate><creator>Prabanantham, Subash</creator><creator>Ojha, Himanshu</creator><creator>Valamjee, Vipul</creator><creator>Shakir, Abdul Hadi</creator><creator>Chanda, Raghuveer</creator><scope>EVB</scope></search><sort><creationdate>20220414</creationdate><title>PREDICTIVE ANOMALY DETECTION FRAMEWORK</title><author>Prabanantham, Subash ; Ojha, Himanshu ; Valamjee, Vipul ; Shakir, Abdul Hadi ; Chanda, Raghuveer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022114074A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Prabanantham, Subash</creatorcontrib><creatorcontrib>Ojha, Himanshu</creatorcontrib><creatorcontrib>Valamjee, Vipul</creatorcontrib><creatorcontrib>Shakir, Abdul Hadi</creatorcontrib><creatorcontrib>Chanda, Raghuveer</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prabanantham, Subash</au><au>Ojha, Himanshu</au><au>Valamjee, Vipul</au><au>Shakir, Abdul Hadi</au><au>Chanda, Raghuveer</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PREDICTIVE ANOMALY DETECTION FRAMEWORK</title><date>2022-04-14</date><risdate>2022</risdate><abstract>Embodiments of the invention are directed to techniques for detecting anomalous values in data streams using forecasting models. In some embodiments, a computer can receive a value of a data stream comprising a plurality of data values, where the received value corresponds to a time interval and previously received values each correspond to a previous time interval. Models can be selected based on the time interval, where each of the models has a different periodicity. For each of the selected models, the computer may generate a score by generating a prediction value based on the model and generating the score based on the prediction value and the received value. A final score can then be generated based on the scores. Next, a score threshold can be generated. If the final score exceeds the score threshold, the computer may generate a notification that indicates that the data value is an anomaly.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022114074A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title PREDICTIVE ANOMALY DETECTION FRAMEWORK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Prabanantham,%20Subash&rft.date=2022-04-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022114074A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true