SYSTEMS AND METHODS FOR CROSS-DOMAIN TRAINING OF SENSING-SYSTEM-MODEL INSTANCES

Disclosed herein are systems and methods for cross-domain training of sensing-system-model instances. In an embodiment, a system receives, via a first application programming interface (API), an input-dataset selection identifying an input dataset, which includes a plurality of dataframes that are i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jarquin Arroyo, Julio Fernando, Alvarez Martinez, Ignacio Javier
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Jarquin Arroyo, Julio Fernando
Alvarez Martinez, Ignacio Javier
description Disclosed herein are systems and methods for cross-domain training of sensing-system-model instances. In an embodiment, a system receives, via a first application programming interface (API), an input-dataset selection identifying an input dataset, which includes a plurality of dataframes that are in a first dataframe format and that have annotations corresponding to one or more sensing tasks performed with respect to the dataframes. The system executes a plurality of dataframe-transformation functions to convert the plurality of dataframes of the input dataset into a predetermined dataframe format. The system trains an instance of a first machine-learning model using the converted dataframes of the input dataset to perform at least a subset of the one or more sensing tasks. The system outputs, via the first API, one or more model-validation metrics pertaining to the training of the instance of the first machine-learning model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022111864A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022111864A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022111864A13</originalsourceid><addsrcrecordid>eNrjZPAPjgwOcfUNVnD0c1HwdQ3x8HcJVnDzD1JwDvIPDtZ18fd19PRTCAkCkp5-7gr-bgrBrn7BQKYuRKOur7-Lq4-Cp19wiKOfs2swDwNrWmJOcSovlOZmUHZzDXH20E0tyI9PLS5ITE7NSy2JDw02MjAyMjQ0tDAzcTQ0Jk4VACMIL_U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS FOR CROSS-DOMAIN TRAINING OF SENSING-SYSTEM-MODEL INSTANCES</title><source>esp@cenet</source><creator>Jarquin Arroyo, Julio Fernando ; Alvarez Martinez, Ignacio Javier</creator><creatorcontrib>Jarquin Arroyo, Julio Fernando ; Alvarez Martinez, Ignacio Javier</creatorcontrib><description>Disclosed herein are systems and methods for cross-domain training of sensing-system-model instances. In an embodiment, a system receives, via a first application programming interface (API), an input-dataset selection identifying an input dataset, which includes a plurality of dataframes that are in a first dataframe format and that have annotations corresponding to one or more sensing tasks performed with respect to the dataframes. The system executes a plurality of dataframe-transformation functions to convert the plurality of dataframes of the input dataset into a predetermined dataframe format. The system trains an instance of a first machine-learning model using the converted dataframes of the input dataset to perform at least a subset of the one or more sensing tasks. The system outputs, via the first API, one or more model-validation metrics pertaining to the training of the instance of the first machine-learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION ; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES ; COUNTING ; HANDLING RECORD CARRIERS ; PERFORMING OPERATIONS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT ; TRANSPORTING ; VEHICLES IN GENERAL</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220414&amp;DB=EPODOC&amp;CC=US&amp;NR=2022111864A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220414&amp;DB=EPODOC&amp;CC=US&amp;NR=2022111864A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jarquin Arroyo, Julio Fernando</creatorcontrib><creatorcontrib>Alvarez Martinez, Ignacio Javier</creatorcontrib><title>SYSTEMS AND METHODS FOR CROSS-DOMAIN TRAINING OF SENSING-SYSTEM-MODEL INSTANCES</title><description>Disclosed herein are systems and methods for cross-domain training of sensing-system-model instances. In an embodiment, a system receives, via a first application programming interface (API), an input-dataset selection identifying an input dataset, which includes a plurality of dataframes that are in a first dataframe format and that have annotations corresponding to one or more sensing tasks performed with respect to the dataframes. The system executes a plurality of dataframe-transformation functions to convert the plurality of dataframes of the input dataset into a predetermined dataframe format. The system trains an instance of a first machine-learning model using the converted dataframes of the input dataset to perform at least a subset of the one or more sensing tasks. The system outputs, via the first API, one or more model-validation metrics pertaining to the training of the instance of the first machine-learning model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</subject><subject>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</subject><subject>TRANSPORTING</subject><subject>VEHICLES IN GENERAL</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAPjgwOcfUNVnD0c1HwdQ3x8HcJVnDzD1JwDvIPDtZ18fd19PRTCAkCkp5-7gr-bgrBrn7BQKYuRKOur7-Lq4-Cp19wiKOfs2swDwNrWmJOcSovlOZmUHZzDXH20E0tyI9PLS5ITE7NSy2JDw02MjAyMjQ0tDAzcTQ0Jk4VACMIL_U</recordid><startdate>20220414</startdate><enddate>20220414</enddate><creator>Jarquin Arroyo, Julio Fernando</creator><creator>Alvarez Martinez, Ignacio Javier</creator><scope>EVB</scope></search><sort><creationdate>20220414</creationdate><title>SYSTEMS AND METHODS FOR CROSS-DOMAIN TRAINING OF SENSING-SYSTEM-MODEL INSTANCES</title><author>Jarquin Arroyo, Julio Fernando ; Alvarez Martinez, Ignacio Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022111864A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION</topic><topic>CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT</topic><topic>TRANSPORTING</topic><topic>VEHICLES IN GENERAL</topic><toplevel>online_resources</toplevel><creatorcontrib>Jarquin Arroyo, Julio Fernando</creatorcontrib><creatorcontrib>Alvarez Martinez, Ignacio Javier</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jarquin Arroyo, Julio Fernando</au><au>Alvarez Martinez, Ignacio Javier</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS FOR CROSS-DOMAIN TRAINING OF SENSING-SYSTEM-MODEL INSTANCES</title><date>2022-04-14</date><risdate>2022</risdate><abstract>Disclosed herein are systems and methods for cross-domain training of sensing-system-model instances. In an embodiment, a system receives, via a first application programming interface (API), an input-dataset selection identifying an input dataset, which includes a plurality of dataframes that are in a first dataframe format and that have annotations corresponding to one or more sensing tasks performed with respect to the dataframes. The system executes a plurality of dataframe-transformation functions to convert the plurality of dataframes of the input dataset into a predetermined dataframe format. The system trains an instance of a first machine-learning model using the converted dataframes of the input dataset to perform at least a subset of the one or more sensing tasks. The system outputs, via the first API, one or more model-validation metrics pertaining to the training of the instance of the first machine-learning model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022111864A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE ORDIFFERENT FUNCTION
CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES
COUNTING
HANDLING RECORD CARRIERS
PERFORMING OPERATIONS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TOTHE CONTROL OF A PARTICULAR SUB-UNIT
TRANSPORTING
VEHICLES IN GENERAL
title SYSTEMS AND METHODS FOR CROSS-DOMAIN TRAINING OF SENSING-SYSTEM-MODEL INSTANCES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Jarquin%20Arroyo,%20Julio%20Fernando&rft.date=2022-04-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022111864A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true