Trajectory Generation Using Road Network Model

Enclosed are embodiments for trajectory generation using a road network model. In an embodiment, a method includes: obtaining, using at least one processor of a vehicle, a location of the vehicle; obtaining, using the at least one processor, sensor data collected at the location; obtaining, using th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wolff, Eric, Beaudoin, Robert
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Wolff, Eric
Beaudoin, Robert
description Enclosed are embodiments for trajectory generation using a road network model. In an embodiment, a method includes: obtaining, using at least one processor of a vehicle, a location of the vehicle; obtaining, using the at least one processor, sensor data collected at the location; obtaining, using the at least one processor, map data for the location; generating, using the one or more processors, at least on possible trajectory for at least one object at the location, wherein the possible trajectory is constrained in accordance with the map data; and predicting, using a machine learning model, a score for the at least one trajectory.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022101155A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022101155A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022101155A13</originalsourceid><addsrcrecordid>eNrjZNALKUrMSk0uyS-qVHBPzUstSizJzM9TCC3OzEtXCMpPTFHwSy0pzy_KVvDNT0nN4WFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFiclAM0riQ4ONDIyMDA0MDU1NHQ2NiVMFAI9YKyk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Trajectory Generation Using Road Network Model</title><source>esp@cenet</source><creator>Wolff, Eric ; Beaudoin, Robert</creator><creatorcontrib>Wolff, Eric ; Beaudoin, Robert</creatorcontrib><description>Enclosed are embodiments for trajectory generation using a road network model. In an embodiment, a method includes: obtaining, using at least one processor of a vehicle, a location of the vehicle; obtaining, using the at least one processor, sensor data collected at the location; obtaining, using the at least one processor, map data for the location; generating, using the one or more processors, at least on possible trajectory for at least one object at the location, wherein the possible trajectory is constrained in accordance with the map data; and predicting, using a machine learning model, a score for the at least one trajectory.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS ; SIGNALLING ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220331&amp;DB=EPODOC&amp;CC=US&amp;NR=2022101155A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220331&amp;DB=EPODOC&amp;CC=US&amp;NR=2022101155A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Wolff, Eric</creatorcontrib><creatorcontrib>Beaudoin, Robert</creatorcontrib><title>Trajectory Generation Using Road Network Model</title><description>Enclosed are embodiments for trajectory generation using a road network model. In an embodiment, a method includes: obtaining, using at least one processor of a vehicle, a location of the vehicle; obtaining, using the at least one processor, sensor data collected at the location; obtaining, using the at least one processor, map data for the location; generating, using the one or more processors, at least on possible trajectory for at least one object at the location, wherein the possible trajectory is constrained in accordance with the map data; and predicting, using a machine learning model, a score for the at least one trajectory.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNALKUrMSk0uyS-qVHBPzUstSizJzM9TCC3OzEtXCMpPTFHwSy0pzy_KVvDNT0nN4WFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFiclAM0riQ4ONDIyMDA0MDU1NHQ2NiVMFAI9YKyk</recordid><startdate>20220331</startdate><enddate>20220331</enddate><creator>Wolff, Eric</creator><creator>Beaudoin, Robert</creator><scope>EVB</scope></search><sort><creationdate>20220331</creationdate><title>Trajectory Generation Using Road Network Model</title><author>Wolff, Eric ; Beaudoin, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022101155A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>Wolff, Eric</creatorcontrib><creatorcontrib>Beaudoin, Robert</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wolff, Eric</au><au>Beaudoin, Robert</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Trajectory Generation Using Road Network Model</title><date>2022-03-31</date><risdate>2022</risdate><abstract>Enclosed are embodiments for trajectory generation using a road network model. In an embodiment, a method includes: obtaining, using at least one processor of a vehicle, a location of the vehicle; obtaining, using the at least one processor, sensor data collected at the location; obtaining, using the at least one processor, map data for the location; generating, using the one or more processors, at least on possible trajectory for at least one object at the location, wherein the possible trajectory is constrained in accordance with the map data; and predicting, using a machine learning model, a score for the at least one trajectory.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022101155A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
SIGNALLING
TRAFFIC CONTROL SYSTEMS
title Trajectory Generation Using Road Network Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Wolff,%20Eric&rft.date=2022-03-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022101155A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true