ANOMALOUS TEXT DETECTION AND ENTITY IDENTIFICATION USING EXPLORATION-EXPLOITATION AND PRE-TRAINED LANGUAGE MODELS

There is a need for more effective and efficient anomalous text detection. This need can be addressed by, for example, solutions for anomalous text detection that include the steps of performing a group of exploration-exploitation keyword extraction iterations based at least in part on one or more t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shukla, Vineet, Gupta, Rajat, Raju Gottumukkala, Ravi Kumar, Ayyadevara, V Kishore, Khilnani, Rohan, Varshney, Ankit
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Shukla, Vineet
Gupta, Rajat
Raju Gottumukkala, Ravi Kumar
Ayyadevara, V Kishore
Khilnani, Rohan
Varshney, Ankit
description There is a need for more effective and efficient anomalous text detection. This need can be addressed by, for example, solutions for anomalous text detection that include the steps of performing a group of exploration-exploitation keyword extraction iterations based at least in part on one or more training corpus data entries until a per-iteration keyword list for an ultimate exploration-exploitation keyword extraction iteration satisfies a keyword list threshold condition; and subsequent to performing the exploration-exploitation keyword extraction iterations: processing one or more input corpus data entries using the language-model-based binary classification model to generate one or more inferred anomaly probabilities, processing the one or more input corpus data entries using the keyword model to generate explanatory metadata for the one or more inferred anomaly probabilities, and performing one or more prediction-based actions based at least in part on the one or more inferred anomaly probabilities and the explanatory metadata.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022083898A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022083898A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022083898A13</originalsourceid><addsrcrecordid>eNqNi7EKwkAQRNNYiPoPC9YHMWliueQ28eCyF3J7EKsQ5KxEI_H_EYNYW81j3sw6eSK7Bq0LHoR6AU1CpRjHgKyBWIycwegPVKbExQRvuAbqW-u6pVELG8Hfse1ISYeGSYNFrgPWBI3TZP02WV3H2xx339wk-4qkPKk4PYY4T-Ml3uNrCD5Lsywt8uJY4CH_b_UGTIE5qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ANOMALOUS TEXT DETECTION AND ENTITY IDENTIFICATION USING EXPLORATION-EXPLOITATION AND PRE-TRAINED LANGUAGE MODELS</title><source>esp@cenet</source><creator>Shukla, Vineet ; Gupta, Rajat ; Raju Gottumukkala, Ravi Kumar ; Ayyadevara, V Kishore ; Khilnani, Rohan ; Varshney, Ankit</creator><creatorcontrib>Shukla, Vineet ; Gupta, Rajat ; Raju Gottumukkala, Ravi Kumar ; Ayyadevara, V Kishore ; Khilnani, Rohan ; Varshney, Ankit</creatorcontrib><description>There is a need for more effective and efficient anomalous text detection. This need can be addressed by, for example, solutions for anomalous text detection that include the steps of performing a group of exploration-exploitation keyword extraction iterations based at least in part on one or more training corpus data entries until a per-iteration keyword list for an ultimate exploration-exploitation keyword extraction iteration satisfies a keyword list threshold condition; and subsequent to performing the exploration-exploitation keyword extraction iterations: processing one or more input corpus data entries using the language-model-based binary classification model to generate one or more inferred anomaly probabilities, processing the one or more input corpus data entries using the keyword model to generate explanatory metadata for the one or more inferred anomaly probabilities, and performing one or more prediction-based actions based at least in part on the one or more inferred anomaly probabilities and the explanatory metadata.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220317&amp;DB=EPODOC&amp;CC=US&amp;NR=2022083898A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220317&amp;DB=EPODOC&amp;CC=US&amp;NR=2022083898A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Shukla, Vineet</creatorcontrib><creatorcontrib>Gupta, Rajat</creatorcontrib><creatorcontrib>Raju Gottumukkala, Ravi Kumar</creatorcontrib><creatorcontrib>Ayyadevara, V Kishore</creatorcontrib><creatorcontrib>Khilnani, Rohan</creatorcontrib><creatorcontrib>Varshney, Ankit</creatorcontrib><title>ANOMALOUS TEXT DETECTION AND ENTITY IDENTIFICATION USING EXPLORATION-EXPLOITATION AND PRE-TRAINED LANGUAGE MODELS</title><description>There is a need for more effective and efficient anomalous text detection. This need can be addressed by, for example, solutions for anomalous text detection that include the steps of performing a group of exploration-exploitation keyword extraction iterations based at least in part on one or more training corpus data entries until a per-iteration keyword list for an ultimate exploration-exploitation keyword extraction iteration satisfies a keyword list threshold condition; and subsequent to performing the exploration-exploitation keyword extraction iterations: processing one or more input corpus data entries using the language-model-based binary classification model to generate one or more inferred anomaly probabilities, processing the one or more input corpus data entries using the keyword model to generate explanatory metadata for the one or more inferred anomaly probabilities, and performing one or more prediction-based actions based at least in part on the one or more inferred anomaly probabilities and the explanatory metadata.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQRNNYiPoPC9YHMWliueQ28eCyF3J7EKsQ5KxEI_H_EYNYW81j3sw6eSK7Bq0LHoR6AU1CpRjHgKyBWIycwegPVKbExQRvuAbqW-u6pVELG8Hfse1ISYeGSYNFrgPWBI3TZP02WV3H2xx339wk-4qkPKk4PYY4T-Ml3uNrCD5Lsywt8uJY4CH_b_UGTIE5qw</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Shukla, Vineet</creator><creator>Gupta, Rajat</creator><creator>Raju Gottumukkala, Ravi Kumar</creator><creator>Ayyadevara, V Kishore</creator><creator>Khilnani, Rohan</creator><creator>Varshney, Ankit</creator><scope>EVB</scope></search><sort><creationdate>20220317</creationdate><title>ANOMALOUS TEXT DETECTION AND ENTITY IDENTIFICATION USING EXPLORATION-EXPLOITATION AND PRE-TRAINED LANGUAGE MODELS</title><author>Shukla, Vineet ; Gupta, Rajat ; Raju Gottumukkala, Ravi Kumar ; Ayyadevara, V Kishore ; Khilnani, Rohan ; Varshney, Ankit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022083898A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Shukla, Vineet</creatorcontrib><creatorcontrib>Gupta, Rajat</creatorcontrib><creatorcontrib>Raju Gottumukkala, Ravi Kumar</creatorcontrib><creatorcontrib>Ayyadevara, V Kishore</creatorcontrib><creatorcontrib>Khilnani, Rohan</creatorcontrib><creatorcontrib>Varshney, Ankit</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shukla, Vineet</au><au>Gupta, Rajat</au><au>Raju Gottumukkala, Ravi Kumar</au><au>Ayyadevara, V Kishore</au><au>Khilnani, Rohan</au><au>Varshney, Ankit</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ANOMALOUS TEXT DETECTION AND ENTITY IDENTIFICATION USING EXPLORATION-EXPLOITATION AND PRE-TRAINED LANGUAGE MODELS</title><date>2022-03-17</date><risdate>2022</risdate><abstract>There is a need for more effective and efficient anomalous text detection. This need can be addressed by, for example, solutions for anomalous text detection that include the steps of performing a group of exploration-exploitation keyword extraction iterations based at least in part on one or more training corpus data entries until a per-iteration keyword list for an ultimate exploration-exploitation keyword extraction iteration satisfies a keyword list threshold condition; and subsequent to performing the exploration-exploitation keyword extraction iterations: processing one or more input corpus data entries using the language-model-based binary classification model to generate one or more inferred anomaly probabilities, processing the one or more input corpus data entries using the keyword model to generate explanatory metadata for the one or more inferred anomaly probabilities, and performing one or more prediction-based actions based at least in part on the one or more inferred anomaly probabilities and the explanatory metadata.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022083898A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title ANOMALOUS TEXT DETECTION AND ENTITY IDENTIFICATION USING EXPLORATION-EXPLOITATION AND PRE-TRAINED LANGUAGE MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Shukla,%20Vineet&rft.date=2022-03-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022083898A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true