ANOMALOUS TEXT DETECTION AND ENTITY IDENTIFICATION USING EXPLORATION-EXPLOITATION AND PRE-TRAINED LANGUAGE MODELS
There is a need for more effective and efficient anomalous text detection. This need can be addressed by, for example, solutions for anomalous text detection that include the steps of performing a group of exploration-exploitation keyword extraction iterations based at least in part on one or more t...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Shukla, Vineet Gupta, Rajat Raju Gottumukkala, Ravi Kumar Ayyadevara, V Kishore Khilnani, Rohan Varshney, Ankit |
description | There is a need for more effective and efficient anomalous text detection. This need can be addressed by, for example, solutions for anomalous text detection that include the steps of performing a group of exploration-exploitation keyword extraction iterations based at least in part on one or more training corpus data entries until a per-iteration keyword list for an ultimate exploration-exploitation keyword extraction iteration satisfies a keyword list threshold condition; and subsequent to performing the exploration-exploitation keyword extraction iterations: processing one or more input corpus data entries using the language-model-based binary classification model to generate one or more inferred anomaly probabilities, processing the one or more input corpus data entries using the keyword model to generate explanatory metadata for the one or more inferred anomaly probabilities, and performing one or more prediction-based actions based at least in part on the one or more inferred anomaly probabilities and the explanatory metadata. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022083898A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022083898A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022083898A13</originalsourceid><addsrcrecordid>eNqNi7EKwkAQRNNYiPoPC9YHMWliueQ28eCyF3J7EKsQ5KxEI_H_EYNYW81j3sw6eSK7Bq0LHoR6AU1CpRjHgKyBWIycwegPVKbExQRvuAbqW-u6pVELG8Hfse1ISYeGSYNFrgPWBI3TZP02WV3H2xx339wk-4qkPKk4PYY4T-Ml3uNrCD5Lsywt8uJY4CH_b_UGTIE5qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ANOMALOUS TEXT DETECTION AND ENTITY IDENTIFICATION USING EXPLORATION-EXPLOITATION AND PRE-TRAINED LANGUAGE MODELS</title><source>esp@cenet</source><creator>Shukla, Vineet ; Gupta, Rajat ; Raju Gottumukkala, Ravi Kumar ; Ayyadevara, V Kishore ; Khilnani, Rohan ; Varshney, Ankit</creator><creatorcontrib>Shukla, Vineet ; Gupta, Rajat ; Raju Gottumukkala, Ravi Kumar ; Ayyadevara, V Kishore ; Khilnani, Rohan ; Varshney, Ankit</creatorcontrib><description>There is a need for more effective and efficient anomalous text detection. This need can be addressed by, for example, solutions for anomalous text detection that include the steps of performing a group of exploration-exploitation keyword extraction iterations based at least in part on one or more training corpus data entries until a per-iteration keyword list for an ultimate exploration-exploitation keyword extraction iteration satisfies a keyword list threshold condition; and subsequent to performing the exploration-exploitation keyword extraction iterations: processing one or more input corpus data entries using the language-model-based binary classification model to generate one or more inferred anomaly probabilities, processing the one or more input corpus data entries using the keyword model to generate explanatory metadata for the one or more inferred anomaly probabilities, and performing one or more prediction-based actions based at least in part on the one or more inferred anomaly probabilities and the explanatory metadata.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220317&DB=EPODOC&CC=US&NR=2022083898A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220317&DB=EPODOC&CC=US&NR=2022083898A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Shukla, Vineet</creatorcontrib><creatorcontrib>Gupta, Rajat</creatorcontrib><creatorcontrib>Raju Gottumukkala, Ravi Kumar</creatorcontrib><creatorcontrib>Ayyadevara, V Kishore</creatorcontrib><creatorcontrib>Khilnani, Rohan</creatorcontrib><creatorcontrib>Varshney, Ankit</creatorcontrib><title>ANOMALOUS TEXT DETECTION AND ENTITY IDENTIFICATION USING EXPLORATION-EXPLOITATION AND PRE-TRAINED LANGUAGE MODELS</title><description>There is a need for more effective and efficient anomalous text detection. This need can be addressed by, for example, solutions for anomalous text detection that include the steps of performing a group of exploration-exploitation keyword extraction iterations based at least in part on one or more training corpus data entries until a per-iteration keyword list for an ultimate exploration-exploitation keyword extraction iteration satisfies a keyword list threshold condition; and subsequent to performing the exploration-exploitation keyword extraction iterations: processing one or more input corpus data entries using the language-model-based binary classification model to generate one or more inferred anomaly probabilities, processing the one or more input corpus data entries using the keyword model to generate explanatory metadata for the one or more inferred anomaly probabilities, and performing one or more prediction-based actions based at least in part on the one or more inferred anomaly probabilities and the explanatory metadata.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQRNNYiPoPC9YHMWliueQ28eCyF3J7EKsQ5KxEI_H_EYNYW81j3sw6eSK7Bq0LHoR6AU1CpRjHgKyBWIycwegPVKbExQRvuAbqW-u6pVELG8Hfse1ISYeGSYNFrgPWBI3TZP02WV3H2xx339wk-4qkPKk4PYY4T-Ml3uNrCD5Lsywt8uJY4CH_b_UGTIE5qw</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Shukla, Vineet</creator><creator>Gupta, Rajat</creator><creator>Raju Gottumukkala, Ravi Kumar</creator><creator>Ayyadevara, V Kishore</creator><creator>Khilnani, Rohan</creator><creator>Varshney, Ankit</creator><scope>EVB</scope></search><sort><creationdate>20220317</creationdate><title>ANOMALOUS TEXT DETECTION AND ENTITY IDENTIFICATION USING EXPLORATION-EXPLOITATION AND PRE-TRAINED LANGUAGE MODELS</title><author>Shukla, Vineet ; Gupta, Rajat ; Raju Gottumukkala, Ravi Kumar ; Ayyadevara, V Kishore ; Khilnani, Rohan ; Varshney, Ankit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022083898A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Shukla, Vineet</creatorcontrib><creatorcontrib>Gupta, Rajat</creatorcontrib><creatorcontrib>Raju Gottumukkala, Ravi Kumar</creatorcontrib><creatorcontrib>Ayyadevara, V Kishore</creatorcontrib><creatorcontrib>Khilnani, Rohan</creatorcontrib><creatorcontrib>Varshney, Ankit</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shukla, Vineet</au><au>Gupta, Rajat</au><au>Raju Gottumukkala, Ravi Kumar</au><au>Ayyadevara, V Kishore</au><au>Khilnani, Rohan</au><au>Varshney, Ankit</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ANOMALOUS TEXT DETECTION AND ENTITY IDENTIFICATION USING EXPLORATION-EXPLOITATION AND PRE-TRAINED LANGUAGE MODELS</title><date>2022-03-17</date><risdate>2022</risdate><abstract>There is a need for more effective and efficient anomalous text detection. This need can be addressed by, for example, solutions for anomalous text detection that include the steps of performing a group of exploration-exploitation keyword extraction iterations based at least in part on one or more training corpus data entries until a per-iteration keyword list for an ultimate exploration-exploitation keyword extraction iteration satisfies a keyword list threshold condition; and subsequent to performing the exploration-exploitation keyword extraction iterations: processing one or more input corpus data entries using the language-model-based binary classification model to generate one or more inferred anomaly probabilities, processing the one or more input corpus data entries using the keyword model to generate explanatory metadata for the one or more inferred anomaly probabilities, and performing one or more prediction-based actions based at least in part on the one or more inferred anomaly probabilities and the explanatory metadata.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022083898A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | ANOMALOUS TEXT DETECTION AND ENTITY IDENTIFICATION USING EXPLORATION-EXPLOITATION AND PRE-TRAINED LANGUAGE MODELS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Shukla,%20Vineet&rft.date=2022-03-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022083898A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |