AUDIO PROCESSING USING DISTRIBUTED MACHINE LEARNING MODEL
Various implementations include systems for processing audio signals. In particular implementations, a system for processing audio signals includes: an accessory device that includes a first processor for running a machine learning model on an input signal, where the machine learning model includes...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Jensen, Carl Ralph Tengelsen, Daniel Ross Lyons, Kenneth Scott Adkins, Sara Maree Eichfeld, Jahn Dmitri Stamenovic, Marko Yang, Li-Chia |
description | Various implementations include systems for processing audio signals. In particular implementations, a system for processing audio signals includes: an accessory device that includes a first processor for running a machine learning model on an input signal, where the machine learning model includes a classifier configured to generate metadata associated with the input signal; and a wearable audio device configured for wireless communication with the accessory device, the wearable audio device including a second processor that utilizes the metadata from the accessory device to process a source audio signal and output a processed audio signal. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022078551A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022078551A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022078551A13</originalsourceid><addsrcrecordid>eNrjZLB0DHXx9FcICPJ3dg0O9vRzVwgFky6ewSFBnk6hIa4uCr6Ozh6efq4KPq6OQX4gSV9_F1cfHgbWtMSc4lReKM3NoOzmGuLsoZtakB-fWlyQmJyal1oSHxpsZGBkZGBuYWpq6GhoTJwqADy_KcI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUDIO PROCESSING USING DISTRIBUTED MACHINE LEARNING MODEL</title><source>esp@cenet</source><creator>Jensen, Carl Ralph ; Tengelsen, Daniel Ross ; Lyons, Kenneth Scott ; Adkins, Sara Maree ; Eichfeld, Jahn Dmitri ; Stamenovic, Marko ; Yang, Li-Chia</creator><creatorcontrib>Jensen, Carl Ralph ; Tengelsen, Daniel Ross ; Lyons, Kenneth Scott ; Adkins, Sara Maree ; Eichfeld, Jahn Dmitri ; Stamenovic, Marko ; Yang, Li-Chia</creatorcontrib><description>Various implementations include systems for processing audio signals. In particular implementations, a system for processing audio signals includes: an accessory device that includes a first processor for running a machine learning model on an input signal, where the machine learning model includes a classifier configured to generate metadata associated with the input signal; and a wearable audio device configured for wireless communication with the accessory device, the wearable audio device including a second processor that utilizes the metadata from the accessory device to process a source audio signal and output a processed audio signal.</description><language>eng</language><subject>ACOUSTICS ; DEAF-AID SETS ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKEACOUSTIC ELECTROMECHANICAL TRANSDUCERS ; MUSICAL INSTRUMENTS ; PHYSICS ; PUBLIC ADDRESS SYSTEMS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220310&DB=EPODOC&CC=US&NR=2022078551A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220310&DB=EPODOC&CC=US&NR=2022078551A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jensen, Carl Ralph</creatorcontrib><creatorcontrib>Tengelsen, Daniel Ross</creatorcontrib><creatorcontrib>Lyons, Kenneth Scott</creatorcontrib><creatorcontrib>Adkins, Sara Maree</creatorcontrib><creatorcontrib>Eichfeld, Jahn Dmitri</creatorcontrib><creatorcontrib>Stamenovic, Marko</creatorcontrib><creatorcontrib>Yang, Li-Chia</creatorcontrib><title>AUDIO PROCESSING USING DISTRIBUTED MACHINE LEARNING MODEL</title><description>Various implementations include systems for processing audio signals. In particular implementations, a system for processing audio signals includes: an accessory device that includes a first processor for running a machine learning model on an input signal, where the machine learning model includes a classifier configured to generate metadata associated with the input signal; and a wearable audio device configured for wireless communication with the accessory device, the wearable audio device including a second processor that utilizes the metadata from the accessory device to process a source audio signal and output a processed audio signal.</description><subject>ACOUSTICS</subject><subject>DEAF-AID SETS</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKEACOUSTIC ELECTROMECHANICAL TRANSDUCERS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>PUBLIC ADDRESS SYSTEMS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB0DHXx9FcICPJ3dg0O9vRzVwgFky6ewSFBnk6hIa4uCr6Ozh6efq4KPq6OQX4gSV9_F1cfHgbWtMSc4lReKM3NoOzmGuLsoZtakB-fWlyQmJyal1oSHxpsZGBkZGBuYWpq6GhoTJwqADy_KcI</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Jensen, Carl Ralph</creator><creator>Tengelsen, Daniel Ross</creator><creator>Lyons, Kenneth Scott</creator><creator>Adkins, Sara Maree</creator><creator>Eichfeld, Jahn Dmitri</creator><creator>Stamenovic, Marko</creator><creator>Yang, Li-Chia</creator><scope>EVB</scope></search><sort><creationdate>20220310</creationdate><title>AUDIO PROCESSING USING DISTRIBUTED MACHINE LEARNING MODEL</title><author>Jensen, Carl Ralph ; Tengelsen, Daniel Ross ; Lyons, Kenneth Scott ; Adkins, Sara Maree ; Eichfeld, Jahn Dmitri ; Stamenovic, Marko ; Yang, Li-Chia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022078551A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ACOUSTICS</topic><topic>DEAF-AID SETS</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKEACOUSTIC ELECTROMECHANICAL TRANSDUCERS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>PUBLIC ADDRESS SYSTEMS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Carl Ralph</creatorcontrib><creatorcontrib>Tengelsen, Daniel Ross</creatorcontrib><creatorcontrib>Lyons, Kenneth Scott</creatorcontrib><creatorcontrib>Adkins, Sara Maree</creatorcontrib><creatorcontrib>Eichfeld, Jahn Dmitri</creatorcontrib><creatorcontrib>Stamenovic, Marko</creatorcontrib><creatorcontrib>Yang, Li-Chia</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jensen, Carl Ralph</au><au>Tengelsen, Daniel Ross</au><au>Lyons, Kenneth Scott</au><au>Adkins, Sara Maree</au><au>Eichfeld, Jahn Dmitri</au><au>Stamenovic, Marko</au><au>Yang, Li-Chia</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUDIO PROCESSING USING DISTRIBUTED MACHINE LEARNING MODEL</title><date>2022-03-10</date><risdate>2022</risdate><abstract>Various implementations include systems for processing audio signals. In particular implementations, a system for processing audio signals includes: an accessory device that includes a first processor for running a machine learning model on an input signal, where the machine learning model includes a classifier configured to generate metadata associated with the input signal; and a wearable audio device configured for wireless communication with the accessory device, the wearable audio device including a second processor that utilizes the metadata from the accessory device to process a source audio signal and output a processed audio signal.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022078551A1 |
source | esp@cenet |
subjects | ACOUSTICS DEAF-AID SETS ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKEACOUSTIC ELECTROMECHANICAL TRANSDUCERS MUSICAL INSTRUMENTS PHYSICS PUBLIC ADDRESS SYSTEMS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | AUDIO PROCESSING USING DISTRIBUTED MACHINE LEARNING MODEL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Jensen,%20Carl%20Ralph&rft.date=2022-03-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022078551A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |