Modelling Request Sequences in Online-Connected Video Games
This specification describes a computer-implemented method for testing the performance of a video game server. The method comprises initializing a recurrent neural network. The recurrent neural network is trained based on requests sent from one or more client devices to the video game server. The in...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Luther, Matthew Alimomeni, Mohsen |
description | This specification describes a computer-implemented method for testing the performance of a video game server. The method comprises initializing a recurrent neural network. The recurrent neural network is trained based on requests sent from one or more client devices to the video game server. The initializing comprises inputting a start token into the recurrent neural network. An output distribution for a first-time step is generated, as an output of the recurrent neural network. The output distribution comprises a probability of generating each of a set of one or more requests to the video game server, in addition to a probability of generating a stop token. A first request from the set of one or more requests is selected based on the output distribution. The method comprises for one or more further time steps, until a stop token has been selected from output of the recurrent neural network: inputting, into the recurrent neural network, a request selected in the previous time step; generating, as an output of the recurrent neural network, an output distribution for the time step; and selecting, based on the output distribution, a request. A generated sequence of requests is stored. The generated sequence of requests comprises one or more of the requests selected at each respect time step. The generated sequence of requests is inputted into a test generator. A performance test for testing the performance of the video game server is generated by the test generator. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022076126A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022076126A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022076126A13</originalsourceid><addsrcrecordid>eNrjZLD2zU9JzcnJzEtXCEotLE0tLlEIBtF5yanFCpl5Cv55QLlUXef8vLzU5JLUFIWwzJTUfAX3xNzUYh4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGRgbmZoZOZoaEycKgA9Oi_e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Modelling Request Sequences in Online-Connected Video Games</title><source>esp@cenet</source><creator>Luther, Matthew ; Alimomeni, Mohsen</creator><creatorcontrib>Luther, Matthew ; Alimomeni, Mohsen</creatorcontrib><description>This specification describes a computer-implemented method for testing the performance of a video game server. The method comprises initializing a recurrent neural network. The recurrent neural network is trained based on requests sent from one or more client devices to the video game server. The initializing comprises inputting a start token into the recurrent neural network. An output distribution for a first-time step is generated, as an output of the recurrent neural network. The output distribution comprises a probability of generating each of a set of one or more requests to the video game server, in addition to a probability of generating a stop token. A first request from the set of one or more requests is selected based on the output distribution. The method comprises for one or more further time steps, until a stop token has been selected from output of the recurrent neural network: inputting, into the recurrent neural network, a request selected in the previous time step; generating, as an output of the recurrent neural network, an output distribution for the time step; and selecting, based on the output distribution, a request. A generated sequence of requests is stored. The generated sequence of requests comprises one or more of the requests selected at each respect time step. The generated sequence of requests is inputted into a test generator. A performance test for testing the performance of the video game server is generated by the test generator.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220310&DB=EPODOC&CC=US&NR=2022076126A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220310&DB=EPODOC&CC=US&NR=2022076126A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Luther, Matthew</creatorcontrib><creatorcontrib>Alimomeni, Mohsen</creatorcontrib><title>Modelling Request Sequences in Online-Connected Video Games</title><description>This specification describes a computer-implemented method for testing the performance of a video game server. The method comprises initializing a recurrent neural network. The recurrent neural network is trained based on requests sent from one or more client devices to the video game server. The initializing comprises inputting a start token into the recurrent neural network. An output distribution for a first-time step is generated, as an output of the recurrent neural network. The output distribution comprises a probability of generating each of a set of one or more requests to the video game server, in addition to a probability of generating a stop token. A first request from the set of one or more requests is selected based on the output distribution. The method comprises for one or more further time steps, until a stop token has been selected from output of the recurrent neural network: inputting, into the recurrent neural network, a request selected in the previous time step; generating, as an output of the recurrent neural network, an output distribution for the time step; and selecting, based on the output distribution, a request. A generated sequence of requests is stored. The generated sequence of requests comprises one or more of the requests selected at each respect time step. The generated sequence of requests is inputted into a test generator. A performance test for testing the performance of the video game server is generated by the test generator.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD2zU9JzcnJzEtXCEotLE0tLlEIBtF5yanFCpl5Cv55QLlUXef8vLzU5JLUFIWwzJTUfAX3xNzUYh4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGRgbmZoZOZoaEycKgA9Oi_e</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Luther, Matthew</creator><creator>Alimomeni, Mohsen</creator><scope>EVB</scope></search><sort><creationdate>20220310</creationdate><title>Modelling Request Sequences in Online-Connected Video Games</title><author>Luther, Matthew ; Alimomeni, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022076126A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Luther, Matthew</creatorcontrib><creatorcontrib>Alimomeni, Mohsen</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luther, Matthew</au><au>Alimomeni, Mohsen</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Modelling Request Sequences in Online-Connected Video Games</title><date>2022-03-10</date><risdate>2022</risdate><abstract>This specification describes a computer-implemented method for testing the performance of a video game server. The method comprises initializing a recurrent neural network. The recurrent neural network is trained based on requests sent from one or more client devices to the video game server. The initializing comprises inputting a start token into the recurrent neural network. An output distribution for a first-time step is generated, as an output of the recurrent neural network. The output distribution comprises a probability of generating each of a set of one or more requests to the video game server, in addition to a probability of generating a stop token. A first request from the set of one or more requests is selected based on the output distribution. The method comprises for one or more further time steps, until a stop token has been selected from output of the recurrent neural network: inputting, into the recurrent neural network, a request selected in the previous time step; generating, as an output of the recurrent neural network, an output distribution for the time step; and selecting, based on the output distribution, a request. A generated sequence of requests is stored. The generated sequence of requests comprises one or more of the requests selected at each respect time step. The generated sequence of requests is inputted into a test generator. A performance test for testing the performance of the video game server is generated by the test generator.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022076126A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Modelling Request Sequences in Online-Connected Video Games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A08%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Luther,%20Matthew&rft.date=2022-03-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022076126A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |