NEURAL NETWORK SYNTHESIS ARCHITECTURE USING ENCODER-DECODER MODELS
Disclosed techniques include neural network architecture using encoder-decoder models. A facial image is obtained for processing on a neural network. The facial image includes unpaired facial image attributes. The facial image is processed through a first encoder-decoder pair and a second encoder-de...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Mishra, Taniya Banerjee, Sandipan Joshi, Ajjen Das |
description | Disclosed techniques include neural network architecture using encoder-decoder models. A facial image is obtained for processing on a neural network. The facial image includes unpaired facial image attributes. The facial image is processed through a first encoder-decoder pair and a second encoder-decoder pair. The first encoder-decoder pair decomposes a first image attribute subspace. The second encoder-decoder pair decomposes a second image attribute subspace. The first encoder-decoder pair outputs a transformation mask based on the first image attribute subspace. The second encoder-decoder pair outputs a second image transformation mask based on the second image attribute subspace. The first image transformation mask and the second image transformation mask are concatenated to enable downstream processing. The concatenated transformation masks are processed on a third encoder-decoder pair and a resulting image is output. The resulting image eliminates a paired training data requirement. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022067519A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022067519A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022067519A13</originalsourceid><addsrcrecordid>eNrjZHDycw0NcvRR8HMNCfcP8lYIjvQL8XAN9gxWcAxy9vAMcXUOCQ1yVQgN9vRzV3D1c_Z3cQ3SdXEF0wq-QNInmIeBNS0xpziVF0pzMyi7uYY4e-imFuTHpxYXJCan5qWWxIcGGxkYGRmYmZsaWjoaGhOnCgDmhyyM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NEURAL NETWORK SYNTHESIS ARCHITECTURE USING ENCODER-DECODER MODELS</title><source>esp@cenet</source><creator>Mishra, Taniya ; Banerjee, Sandipan ; Joshi, Ajjen Das</creator><creatorcontrib>Mishra, Taniya ; Banerjee, Sandipan ; Joshi, Ajjen Das</creatorcontrib><description>Disclosed techniques include neural network architecture using encoder-decoder models. A facial image is obtained for processing on a neural network. The facial image includes unpaired facial image attributes. The facial image is processed through a first encoder-decoder pair and a second encoder-decoder pair. The first encoder-decoder pair decomposes a first image attribute subspace. The second encoder-decoder pair decomposes a second image attribute subspace. The first encoder-decoder pair outputs a transformation mask based on the first image attribute subspace. The second encoder-decoder pair outputs a second image transformation mask based on the second image attribute subspace. The first image transformation mask and the second image transformation mask are concatenated to enable downstream processing. The concatenated transformation masks are processed on a third encoder-decoder pair and a resulting image is output. The resulting image eliminates a paired training data requirement.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220303&DB=EPODOC&CC=US&NR=2022067519A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220303&DB=EPODOC&CC=US&NR=2022067519A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mishra, Taniya</creatorcontrib><creatorcontrib>Banerjee, Sandipan</creatorcontrib><creatorcontrib>Joshi, Ajjen Das</creatorcontrib><title>NEURAL NETWORK SYNTHESIS ARCHITECTURE USING ENCODER-DECODER MODELS</title><description>Disclosed techniques include neural network architecture using encoder-decoder models. A facial image is obtained for processing on a neural network. The facial image includes unpaired facial image attributes. The facial image is processed through a first encoder-decoder pair and a second encoder-decoder pair. The first encoder-decoder pair decomposes a first image attribute subspace. The second encoder-decoder pair decomposes a second image attribute subspace. The first encoder-decoder pair outputs a transformation mask based on the first image attribute subspace. The second encoder-decoder pair outputs a second image transformation mask based on the second image attribute subspace. The first image transformation mask and the second image transformation mask are concatenated to enable downstream processing. The concatenated transformation masks are processed on a third encoder-decoder pair and a resulting image is output. The resulting image eliminates a paired training data requirement.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDycw0NcvRR8HMNCfcP8lYIjvQL8XAN9gxWcAxy9vAMcXUOCQ1yVQgN9vRzV3D1c_Z3cQ3SdXEF0wq-QNInmIeBNS0xpziVF0pzMyi7uYY4e-imFuTHpxYXJCan5qWWxIcGGxkYGRmYmZsaWjoaGhOnCgDmhyyM</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Mishra, Taniya</creator><creator>Banerjee, Sandipan</creator><creator>Joshi, Ajjen Das</creator><scope>EVB</scope></search><sort><creationdate>20220303</creationdate><title>NEURAL NETWORK SYNTHESIS ARCHITECTURE USING ENCODER-DECODER MODELS</title><author>Mishra, Taniya ; Banerjee, Sandipan ; Joshi, Ajjen Das</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022067519A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Taniya</creatorcontrib><creatorcontrib>Banerjee, Sandipan</creatorcontrib><creatorcontrib>Joshi, Ajjen Das</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mishra, Taniya</au><au>Banerjee, Sandipan</au><au>Joshi, Ajjen Das</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NEURAL NETWORK SYNTHESIS ARCHITECTURE USING ENCODER-DECODER MODELS</title><date>2022-03-03</date><risdate>2022</risdate><abstract>Disclosed techniques include neural network architecture using encoder-decoder models. A facial image is obtained for processing on a neural network. The facial image includes unpaired facial image attributes. The facial image is processed through a first encoder-decoder pair and a second encoder-decoder pair. The first encoder-decoder pair decomposes a first image attribute subspace. The second encoder-decoder pair decomposes a second image attribute subspace. The first encoder-decoder pair outputs a transformation mask based on the first image attribute subspace. The second encoder-decoder pair outputs a second image transformation mask based on the second image attribute subspace. The first image transformation mask and the second image transformation mask are concatenated to enable downstream processing. The concatenated transformation masks are processed on a third encoder-decoder pair and a resulting image is output. The resulting image eliminates a paired training data requirement.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022067519A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | NEURAL NETWORK SYNTHESIS ARCHITECTURE USING ENCODER-DECODER MODELS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Mishra,%20Taniya&rft.date=2022-03-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022067519A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |