NEURAL NETWORK METHOD OF GENERATING FOOD FORMULAS
Techniques to mimic a target food item using artificial intelligence are disclosed. A formula generator is trained using combinations of ingredients. A training set may include, for each combination of ingredients, proportions, and features of the ingredients in a respective combination of ingredien...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Pichara, Karim Korsunsky, Ofer Philip Navon, Yoav Hausman, Richard Patel, Aadit |
description | Techniques to mimic a target food item using artificial intelligence are disclosed. A formula generator is trained using combinations of ingredients. A training set may include, for each combination of ingredients, proportions, and features of the ingredients in a respective combination of ingredients. Given a target food item, the formula generator determines a predicted formula that matches the given target food item. The predicted formula includes a set ingredients and a respective proportion of each ingredient in the set of ingredient. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022044768A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022044768A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022044768A13</originalsourceid><addsrcrecordid>eNrjZDD0cw0NcvRR8HMNCfcP8lbwdQ3x8HdR8HdTcHf1cw1yDPH0c1dw8wcKufkH-Yb6OAbzMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyMjAxMTczMLR0Nj4lQBAPNvJ44</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NEURAL NETWORK METHOD OF GENERATING FOOD FORMULAS</title><source>esp@cenet</source><creator>Pichara, Karim ; Korsunsky, Ofer Philip ; Navon, Yoav ; Hausman, Richard ; Patel, Aadit</creator><creatorcontrib>Pichara, Karim ; Korsunsky, Ofer Philip ; Navon, Yoav ; Hausman, Richard ; Patel, Aadit</creatorcontrib><description>Techniques to mimic a target food item using artificial intelligence are disclosed. A formula generator is trained using combinations of ingredients. A training set may include, for each combination of ingredients, proportions, and features of the ingredients in a respective combination of ingredients. Given a target food item, the formula generator determines a predicted formula that matches the given target food item. The predicted formula includes a set ingredients and a respective proportion of each ingredient in the set of ingredient.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220210&DB=EPODOC&CC=US&NR=2022044768A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220210&DB=EPODOC&CC=US&NR=2022044768A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pichara, Karim</creatorcontrib><creatorcontrib>Korsunsky, Ofer Philip</creatorcontrib><creatorcontrib>Navon, Yoav</creatorcontrib><creatorcontrib>Hausman, Richard</creatorcontrib><creatorcontrib>Patel, Aadit</creatorcontrib><title>NEURAL NETWORK METHOD OF GENERATING FOOD FORMULAS</title><description>Techniques to mimic a target food item using artificial intelligence are disclosed. A formula generator is trained using combinations of ingredients. A training set may include, for each combination of ingredients, proportions, and features of the ingredients in a respective combination of ingredients. Given a target food item, the formula generator determines a predicted formula that matches the given target food item. The predicted formula includes a set ingredients and a respective proportion of each ingredient in the set of ingredient.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDD0cw0NcvRR8HMNCfcP8lbwdQ3x8HdR8HdTcHf1cw1yDPH0c1dw8wcKufkH-Yb6OAbzMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyMjAxMTczMLR0Nj4lQBAPNvJ44</recordid><startdate>20220210</startdate><enddate>20220210</enddate><creator>Pichara, Karim</creator><creator>Korsunsky, Ofer Philip</creator><creator>Navon, Yoav</creator><creator>Hausman, Richard</creator><creator>Patel, Aadit</creator><scope>EVB</scope></search><sort><creationdate>20220210</creationdate><title>NEURAL NETWORK METHOD OF GENERATING FOOD FORMULAS</title><author>Pichara, Karim ; Korsunsky, Ofer Philip ; Navon, Yoav ; Hausman, Richard ; Patel, Aadit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022044768A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Pichara, Karim</creatorcontrib><creatorcontrib>Korsunsky, Ofer Philip</creatorcontrib><creatorcontrib>Navon, Yoav</creatorcontrib><creatorcontrib>Hausman, Richard</creatorcontrib><creatorcontrib>Patel, Aadit</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pichara, Karim</au><au>Korsunsky, Ofer Philip</au><au>Navon, Yoav</au><au>Hausman, Richard</au><au>Patel, Aadit</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NEURAL NETWORK METHOD OF GENERATING FOOD FORMULAS</title><date>2022-02-10</date><risdate>2022</risdate><abstract>Techniques to mimic a target food item using artificial intelligence are disclosed. A formula generator is trained using combinations of ingredients. A training set may include, for each combination of ingredients, proportions, and features of the ingredients in a respective combination of ingredients. Given a target food item, the formula generator determines a predicted formula that matches the given target food item. The predicted formula includes a set ingredients and a respective proportion of each ingredient in the set of ingredient.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022044768A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
title | NEURAL NETWORK METHOD OF GENERATING FOOD FORMULAS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Pichara,%20Karim&rft.date=2022-02-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022044768A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |