METHOD FOR TRAINING A LINGUISTIC MODEL AND ELECTRONIC DEVICE

The present disclosure provides a method for training a linguistic model, related to fields of speech, natural language processing, deep learning technologies. A method includes: obtaining grammars corresponding to a plurality of sample texts and a slot value of a slot in each grammar by using seman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Liao, Jiang, Zhengxiang, Fu, Xiaoyin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Zhang, Liao
Jiang, Zhengxiang
Fu, Xiaoyin
description The present disclosure provides a method for training a linguistic model, related to fields of speech, natural language processing, deep learning technologies. A method includes: obtaining grammars corresponding to a plurality of sample texts and a slot value of a slot in each grammar by using semantic analysis; generating a grammar graph corresponding to each grammar based on the corresponding grammar and the slot value of the slot in the corresponding grammar; obtaining a weight of each grammar, a weight of each slot, and a weight of each slot value in each grammar graph based on the sample texts; determining at least one grammar frequency of each order based on the weight of each grammar, the weight of each slot, and the weight of each slot value in each grammar graph; and training the linguistic model based on the at least one grammar frequency of each order.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022036880A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022036880A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022036880A13</originalsourceid><addsrcrecordid>eNrjZLDxdQ3x8HdRcPMPUggJcvT08_RzV3BU8AFSoZ7BIZ7OCr7-Lq4-Co5-LgquPq7OIUH-fkBBF9cwT2dXHgbWtMSc4lReKM3NoOzmGuLsoZtakB-fWlyQmJyal1oSHxpsZGBkZGBsZmFh4GhoTJwqAIiJKjE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD FOR TRAINING A LINGUISTIC MODEL AND ELECTRONIC DEVICE</title><source>esp@cenet</source><creator>Zhang, Liao ; Jiang, Zhengxiang ; Fu, Xiaoyin</creator><creatorcontrib>Zhang, Liao ; Jiang, Zhengxiang ; Fu, Xiaoyin</creatorcontrib><description>The present disclosure provides a method for training a linguistic model, related to fields of speech, natural language processing, deep learning technologies. A method includes: obtaining grammars corresponding to a plurality of sample texts and a slot value of a slot in each grammar by using semantic analysis; generating a grammar graph corresponding to each grammar based on the corresponding grammar and the slot value of the slot in the corresponding grammar; obtaining a weight of each grammar, a weight of each slot, and a weight of each slot value in each grammar graph based on the sample texts; determining at least one grammar frequency of each order based on the weight of each grammar, the weight of each slot, and the weight of each slot value in each grammar graph; and training the linguistic model based on the at least one grammar frequency of each order.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220203&amp;DB=EPODOC&amp;CC=US&amp;NR=2022036880A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220203&amp;DB=EPODOC&amp;CC=US&amp;NR=2022036880A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zhang, Liao</creatorcontrib><creatorcontrib>Jiang, Zhengxiang</creatorcontrib><creatorcontrib>Fu, Xiaoyin</creatorcontrib><title>METHOD FOR TRAINING A LINGUISTIC MODEL AND ELECTRONIC DEVICE</title><description>The present disclosure provides a method for training a linguistic model, related to fields of speech, natural language processing, deep learning technologies. A method includes: obtaining grammars corresponding to a plurality of sample texts and a slot value of a slot in each grammar by using semantic analysis; generating a grammar graph corresponding to each grammar based on the corresponding grammar and the slot value of the slot in the corresponding grammar; obtaining a weight of each grammar, a weight of each slot, and a weight of each slot value in each grammar graph based on the sample texts; determining at least one grammar frequency of each order based on the weight of each grammar, the weight of each slot, and the weight of each slot value in each grammar graph; and training the linguistic model based on the at least one grammar frequency of each order.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDxdQ3x8HdRcPMPUggJcvT08_RzV3BU8AFSoZ7BIZ7OCr7-Lq4-Co5-LgquPq7OIUH-fkBBF9cwT2dXHgbWtMSc4lReKM3NoOzmGuLsoZtakB-fWlyQmJyal1oSHxpsZGBkZGBsZmFh4GhoTJwqAIiJKjE</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Zhang, Liao</creator><creator>Jiang, Zhengxiang</creator><creator>Fu, Xiaoyin</creator><scope>EVB</scope></search><sort><creationdate>20220203</creationdate><title>METHOD FOR TRAINING A LINGUISTIC MODEL AND ELECTRONIC DEVICE</title><author>Zhang, Liao ; Jiang, Zhengxiang ; Fu, Xiaoyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022036880A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liao</creatorcontrib><creatorcontrib>Jiang, Zhengxiang</creatorcontrib><creatorcontrib>Fu, Xiaoyin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Liao</au><au>Jiang, Zhengxiang</au><au>Fu, Xiaoyin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD FOR TRAINING A LINGUISTIC MODEL AND ELECTRONIC DEVICE</title><date>2022-02-03</date><risdate>2022</risdate><abstract>The present disclosure provides a method for training a linguistic model, related to fields of speech, natural language processing, deep learning technologies. A method includes: obtaining grammars corresponding to a plurality of sample texts and a slot value of a slot in each grammar by using semantic analysis; generating a grammar graph corresponding to each grammar based on the corresponding grammar and the slot value of the slot in the corresponding grammar; obtaining a weight of each grammar, a weight of each slot, and a weight of each slot value in each grammar graph based on the sample texts; determining at least one grammar frequency of each order based on the weight of each grammar, the weight of each slot, and the weight of each slot value in each grammar graph; and training the linguistic model based on the at least one grammar frequency of each order.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022036880A1
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title METHOD FOR TRAINING A LINGUISTIC MODEL AND ELECTRONIC DEVICE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Zhang,%20Liao&rft.date=2022-02-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022036880A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true