APPARATUS AND METHOD FOR DETERMINING VULNERABILITY OF DEEP LEARNING MODEL

An apparatus for determining a vulnerability of a deep learning model according to an embodiment includes a converter configured to generate an input image for the deep learning model by transforming an original image selected from an image dataset, a measurer configured to measure neuron coverage o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MUN, Hyun Jun, YU, Ji Hyeon, YUN, Joo Beom
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MUN, Hyun Jun
YU, Ji Hyeon
YUN, Joo Beom
description An apparatus for determining a vulnerability of a deep learning model according to an embodiment includes a converter configured to generate an input image for the deep learning model by transforming an original image selected from an image dataset, a measurer configured to measure neuron coverage of the deep learning model by inputting the input image into the deep learning model, and an inspector configured to detect, based on a prediction result of the deep learning model for a class of the input image and a class of the original image, an error in the prediction result.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022019675A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022019675A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022019675A13</originalsourceid><addsrcrecordid>eNrjZPB0DAhwDHIMCQ1WcPRzUfB1DfHwd1Fw8w9ScHENcQ3y9fTz9HNXCAv18XMNcnTy9PEMiVTwdwNKugYo-Lg6BoGlff1dXH14GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgZGRgaGlmbmpo6ExcaoA5ZcuCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>APPARATUS AND METHOD FOR DETERMINING VULNERABILITY OF DEEP LEARNING MODEL</title><source>esp@cenet</source><creator>MUN, Hyun Jun ; YU, Ji Hyeon ; YUN, Joo Beom</creator><creatorcontrib>MUN, Hyun Jun ; YU, Ji Hyeon ; YUN, Joo Beom</creatorcontrib><description>An apparatus for determining a vulnerability of a deep learning model according to an embodiment includes a converter configured to generate an input image for the deep learning model by transforming an original image selected from an image dataset, a measurer configured to measure neuron coverage of the deep learning model by inputting the input image into the deep learning model, and an inspector configured to detect, based on a prediction result of the deep learning model for a class of the input image and a class of the original image, an error in the prediction result.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220120&amp;DB=EPODOC&amp;CC=US&amp;NR=2022019675A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220120&amp;DB=EPODOC&amp;CC=US&amp;NR=2022019675A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MUN, Hyun Jun</creatorcontrib><creatorcontrib>YU, Ji Hyeon</creatorcontrib><creatorcontrib>YUN, Joo Beom</creatorcontrib><title>APPARATUS AND METHOD FOR DETERMINING VULNERABILITY OF DEEP LEARNING MODEL</title><description>An apparatus for determining a vulnerability of a deep learning model according to an embodiment includes a converter configured to generate an input image for the deep learning model by transforming an original image selected from an image dataset, a measurer configured to measure neuron coverage of the deep learning model by inputting the input image into the deep learning model, and an inspector configured to detect, based on a prediction result of the deep learning model for a class of the input image and a class of the original image, an error in the prediction result.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB0DAhwDHIMCQ1WcPRzUfB1DfHwd1Fw8w9ScHENcQ3y9fTz9HNXCAv18XMNcnTy9PEMiVTwdwNKugYo-Lg6BoGlff1dXH14GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgZGRgaGlmbmpo6ExcaoA5ZcuCA</recordid><startdate>20220120</startdate><enddate>20220120</enddate><creator>MUN, Hyun Jun</creator><creator>YU, Ji Hyeon</creator><creator>YUN, Joo Beom</creator><scope>EVB</scope></search><sort><creationdate>20220120</creationdate><title>APPARATUS AND METHOD FOR DETERMINING VULNERABILITY OF DEEP LEARNING MODEL</title><author>MUN, Hyun Jun ; YU, Ji Hyeon ; YUN, Joo Beom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022019675A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>MUN, Hyun Jun</creatorcontrib><creatorcontrib>YU, Ji Hyeon</creatorcontrib><creatorcontrib>YUN, Joo Beom</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MUN, Hyun Jun</au><au>YU, Ji Hyeon</au><au>YUN, Joo Beom</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>APPARATUS AND METHOD FOR DETERMINING VULNERABILITY OF DEEP LEARNING MODEL</title><date>2022-01-20</date><risdate>2022</risdate><abstract>An apparatus for determining a vulnerability of a deep learning model according to an embodiment includes a converter configured to generate an input image for the deep learning model by transforming an original image selected from an image dataset, a measurer configured to measure neuron coverage of the deep learning model by inputting the input image into the deep learning model, and an inspector configured to detect, based on a prediction result of the deep learning model for a class of the input image and a class of the original image, an error in the prediction result.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022019675A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title APPARATUS AND METHOD FOR DETERMINING VULNERABILITY OF DEEP LEARNING MODEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MUN,%20Hyun%20Jun&rft.date=2022-01-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022019675A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true