COMPACT REPRESENTATION AND TIME SERIES SEGMENT RETRIEVAL THROUGH DEEP LEARNING

Systems and methods for retrieving similar multivariate time series segments are provided. The systems and methods include extracting a long feature vector and a short feature vector from a time series segment, converting the long feature vector into a long binary code, and converting the short feat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lumezanu, Cristian, Mizoguchi, Takehiko, Song, Dongjin, Chen, Haifeng, Chen, Yuncong
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lumezanu, Cristian
Mizoguchi, Takehiko
Song, Dongjin
Chen, Haifeng
Chen, Yuncong
description Systems and methods for retrieving similar multivariate time series segments are provided. The systems and methods include extracting a long feature vector and a short feature vector from a time series segment, converting the long feature vector into a long binary code, and converting the short feature vector into a short binary code. The systems and methods further include obtaining a subset of long binary codes from a binary dictionary storing dictionary long codes based on the short binary codes, and calculating similarity measure for each pair of the long feature vector with each dictionary long code. The systems and methods further include identifying a predetermined number of dictionary long codes having the similarity measures indicting a closest relationship between the long binary codes and dictionary long codes, and retrieving a predetermined number of time series segments associated with the predetermined number of dictionary long codes.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022012538A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022012538A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022012538A13</originalsourceid><addsrcrecordid>eNqNirEKwjAUALM4iPoPD5yFNkVwDekzCTQvIXl1LUXiJFqo_48Z_ACn47jbCtLBR6UZEsaEGYkVu0CgqAd2HiFjcpgrjK-xblz9pgZgm8JoLPSIEQZUiRyZvdg85udaDj_uxPGKrO2pLO-prMt8L6_ymcYsGymbVp67i2q7_64v6_svkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>COMPACT REPRESENTATION AND TIME SERIES SEGMENT RETRIEVAL THROUGH DEEP LEARNING</title><source>esp@cenet</source><creator>Lumezanu, Cristian ; Mizoguchi, Takehiko ; Song, Dongjin ; Chen, Haifeng ; Chen, Yuncong</creator><creatorcontrib>Lumezanu, Cristian ; Mizoguchi, Takehiko ; Song, Dongjin ; Chen, Haifeng ; Chen, Yuncong</creatorcontrib><description>Systems and methods for retrieving similar multivariate time series segments are provided. The systems and methods include extracting a long feature vector and a short feature vector from a time series segment, converting the long feature vector into a long binary code, and converting the short feature vector into a short binary code. The systems and methods further include obtaining a subset of long binary codes from a binary dictionary storing dictionary long codes based on the short binary codes, and calculating similarity measure for each pair of the long feature vector with each dictionary long code. The systems and methods further include identifying a predetermined number of dictionary long codes having the similarity measures indicting a closest relationship between the long binary codes and dictionary long codes, and retrieving a predetermined number of time series segments associated with the predetermined number of dictionary long codes.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220113&amp;DB=EPODOC&amp;CC=US&amp;NR=2022012538A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220113&amp;DB=EPODOC&amp;CC=US&amp;NR=2022012538A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lumezanu, Cristian</creatorcontrib><creatorcontrib>Mizoguchi, Takehiko</creatorcontrib><creatorcontrib>Song, Dongjin</creatorcontrib><creatorcontrib>Chen, Haifeng</creatorcontrib><creatorcontrib>Chen, Yuncong</creatorcontrib><title>COMPACT REPRESENTATION AND TIME SERIES SEGMENT RETRIEVAL THROUGH DEEP LEARNING</title><description>Systems and methods for retrieving similar multivariate time series segments are provided. The systems and methods include extracting a long feature vector and a short feature vector from a time series segment, converting the long feature vector into a long binary code, and converting the short feature vector into a short binary code. The systems and methods further include obtaining a subset of long binary codes from a binary dictionary storing dictionary long codes based on the short binary codes, and calculating similarity measure for each pair of the long feature vector with each dictionary long code. The systems and methods further include identifying a predetermined number of dictionary long codes having the similarity measures indicting a closest relationship between the long binary codes and dictionary long codes, and retrieving a predetermined number of time series segments associated with the predetermined number of dictionary long codes.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwjAUALM4iPoPD5yFNkVwDekzCTQvIXl1LUXiJFqo_48Z_ACn47jbCtLBR6UZEsaEGYkVu0CgqAd2HiFjcpgrjK-xblz9pgZgm8JoLPSIEQZUiRyZvdg85udaDj_uxPGKrO2pLO-prMt8L6_ymcYsGymbVp67i2q7_64v6_svkg</recordid><startdate>20220113</startdate><enddate>20220113</enddate><creator>Lumezanu, Cristian</creator><creator>Mizoguchi, Takehiko</creator><creator>Song, Dongjin</creator><creator>Chen, Haifeng</creator><creator>Chen, Yuncong</creator><scope>EVB</scope></search><sort><creationdate>20220113</creationdate><title>COMPACT REPRESENTATION AND TIME SERIES SEGMENT RETRIEVAL THROUGH DEEP LEARNING</title><author>Lumezanu, Cristian ; Mizoguchi, Takehiko ; Song, Dongjin ; Chen, Haifeng ; Chen, Yuncong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022012538A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Lumezanu, Cristian</creatorcontrib><creatorcontrib>Mizoguchi, Takehiko</creatorcontrib><creatorcontrib>Song, Dongjin</creatorcontrib><creatorcontrib>Chen, Haifeng</creatorcontrib><creatorcontrib>Chen, Yuncong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lumezanu, Cristian</au><au>Mizoguchi, Takehiko</au><au>Song, Dongjin</au><au>Chen, Haifeng</au><au>Chen, Yuncong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>COMPACT REPRESENTATION AND TIME SERIES SEGMENT RETRIEVAL THROUGH DEEP LEARNING</title><date>2022-01-13</date><risdate>2022</risdate><abstract>Systems and methods for retrieving similar multivariate time series segments are provided. The systems and methods include extracting a long feature vector and a short feature vector from a time series segment, converting the long feature vector into a long binary code, and converting the short feature vector into a short binary code. The systems and methods further include obtaining a subset of long binary codes from a binary dictionary storing dictionary long codes based on the short binary codes, and calculating similarity measure for each pair of the long feature vector with each dictionary long code. The systems and methods further include identifying a predetermined number of dictionary long codes having the similarity measures indicting a closest relationship between the long binary codes and dictionary long codes, and retrieving a predetermined number of time series segments associated with the predetermined number of dictionary long codes.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022012538A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title COMPACT REPRESENTATION AND TIME SERIES SEGMENT RETRIEVAL THROUGH DEEP LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lumezanu,%20Cristian&rft.date=2022-01-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022012538A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true