OPTIMIZATION OF DISCRETE FRACTURE NETWORK (DFN) USING STREAMLINES AND MACHINE LEARNING

A methodology is provided to optimize the dynamic connectivity of a discrete fracture network (DFN) model of a subsurface reservoir against observed reservoir production measures using streamlines and machine learning. Adjustment of discrete fracture network properties of the reservoir is made local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Awan, Anwar Rahim, Amari, Mustafa, Camargo, Otto E. Meza, Al-Garni, Marei
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Awan, Anwar Rahim
Amari, Mustafa
Camargo, Otto E. Meza
Al-Garni, Marei
description A methodology is provided to optimize the dynamic connectivity of a discrete fracture network (DFN) model of a subsurface reservoir against observed reservoir production measures using streamlines and machine learning. Adjustment of discrete fracture network properties of the reservoir is made locally and minimizes computer processing time spent in history matching. An iterative workflow identifies history match issues between measured and predicted or simulated water cut of reservoir produced fluids. Streamline analysis quantifies injector-producer communication and identifies reservoir grid block bundles that dominate dynamic response. A genetic algorithm updates discrete fracture network properties of the reservoir model to improve dynamic history match response.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022010678A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022010678A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022010678A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-w4GLDkIbQV2P9GKD7UWSi4JLKRIn0UJ9f-zgAzj9_PBNs4s7i23sDcU6BmegtEF7EgLjUUv0BExydf4Eq9LwGmKwfIQgnrCpLVMA5BIa1NU4UBN6HsE8mzy655AWv86ypSHR1Sb17zYNfXdPr_RpY1C5UnmR7_YHLLb_qS9XgjGM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>OPTIMIZATION OF DISCRETE FRACTURE NETWORK (DFN) USING STREAMLINES AND MACHINE LEARNING</title><source>esp@cenet</source><creator>Awan, Anwar Rahim ; Amari, Mustafa ; Camargo, Otto E. Meza ; Al-Garni, Marei</creator><creatorcontrib>Awan, Anwar Rahim ; Amari, Mustafa ; Camargo, Otto E. Meza ; Al-Garni, Marei</creatorcontrib><description>A methodology is provided to optimize the dynamic connectivity of a discrete fracture network (DFN) model of a subsurface reservoir against observed reservoir production measures using streamlines and machine learning. Adjustment of discrete fracture network properties of the reservoir is made locally and minimizes computer processing time spent in history matching. An iterative workflow identifies history match issues between measured and predicted or simulated water cut of reservoir produced fluids. Streamline analysis quantifies injector-producer communication and identifies reservoir grid block bundles that dominate dynamic response. A genetic algorithm updates discrete fracture network properties of the reservoir model to improve dynamic history match response.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; FIXED CONSTRUCTIONS ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220113&amp;DB=EPODOC&amp;CC=US&amp;NR=2022010678A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220113&amp;DB=EPODOC&amp;CC=US&amp;NR=2022010678A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Awan, Anwar Rahim</creatorcontrib><creatorcontrib>Amari, Mustafa</creatorcontrib><creatorcontrib>Camargo, Otto E. Meza</creatorcontrib><creatorcontrib>Al-Garni, Marei</creatorcontrib><title>OPTIMIZATION OF DISCRETE FRACTURE NETWORK (DFN) USING STREAMLINES AND MACHINE LEARNING</title><description>A methodology is provided to optimize the dynamic connectivity of a discrete fracture network (DFN) model of a subsurface reservoir against observed reservoir production measures using streamlines and machine learning. Adjustment of discrete fracture network properties of the reservoir is made locally and minimizes computer processing time spent in history matching. An iterative workflow identifies history match issues between measured and predicted or simulated water cut of reservoir produced fluids. Streamline analysis quantifies injector-producer communication and identifies reservoir grid block bundles that dominate dynamic response. A genetic algorithm updates discrete fracture network properties of the reservoir model to improve dynamic history match response.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-w4GLDkIbQV2P9GKD7UWSi4JLKRIn0UJ9f-zgAzj9_PBNs4s7i23sDcU6BmegtEF7EgLjUUv0BExydf4Eq9LwGmKwfIQgnrCpLVMA5BIa1NU4UBN6HsE8mzy655AWv86ypSHR1Sb17zYNfXdPr_RpY1C5UnmR7_YHLLb_qS9XgjGM</recordid><startdate>20220113</startdate><enddate>20220113</enddate><creator>Awan, Anwar Rahim</creator><creator>Amari, Mustafa</creator><creator>Camargo, Otto E. Meza</creator><creator>Al-Garni, Marei</creator><scope>EVB</scope></search><sort><creationdate>20220113</creationdate><title>OPTIMIZATION OF DISCRETE FRACTURE NETWORK (DFN) USING STREAMLINES AND MACHINE LEARNING</title><author>Awan, Anwar Rahim ; Amari, Mustafa ; Camargo, Otto E. Meza ; Al-Garni, Marei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022010678A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Awan, Anwar Rahim</creatorcontrib><creatorcontrib>Amari, Mustafa</creatorcontrib><creatorcontrib>Camargo, Otto E. Meza</creatorcontrib><creatorcontrib>Al-Garni, Marei</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Awan, Anwar Rahim</au><au>Amari, Mustafa</au><au>Camargo, Otto E. Meza</au><au>Al-Garni, Marei</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>OPTIMIZATION OF DISCRETE FRACTURE NETWORK (DFN) USING STREAMLINES AND MACHINE LEARNING</title><date>2022-01-13</date><risdate>2022</risdate><abstract>A methodology is provided to optimize the dynamic connectivity of a discrete fracture network (DFN) model of a subsurface reservoir against observed reservoir production measures using streamlines and machine learning. Adjustment of discrete fracture network properties of the reservoir is made locally and minimizes computer processing time spent in history matching. An iterative workflow identifies history match issues between measured and predicted or simulated water cut of reservoir produced fluids. Streamline analysis quantifies injector-producer communication and identifies reservoir grid block bundles that dominate dynamic response. A genetic algorithm updates discrete fracture network properties of the reservoir model to improve dynamic history match response.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022010678A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
EARTH DRILLING
EARTH DRILLING, e.g. DEEP DRILLING
FIXED CONSTRUCTIONS
MINING
OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS
PHYSICS
title OPTIMIZATION OF DISCRETE FRACTURE NETWORK (DFN) USING STREAMLINES AND MACHINE LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Awan,%20Anwar%20Rahim&rft.date=2022-01-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022010678A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true