JOINT-BASED ITEM RECOGNITION

For an input image of a person, a set of object proposals are generated in the form of bounding boxes. A pose detector identifies coordinates in the image corresponding to locations on the person's body, such as the waist, head, hands, and feet of the person. A convolutional neural network rece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hara, Kota, Piramuthu, Robinson, Jagadeesh, Vignesh
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hara, Kota
Piramuthu, Robinson
Jagadeesh, Vignesh
description For an input image of a person, a set of object proposals are generated in the form of bounding boxes. A pose detector identifies coordinates in the image corresponding to locations on the person's body, such as the waist, head, hands, and feet of the person. A convolutional neural network receives the portions of the input image defined by the bounding boxes and generates a feature vector for each image portion. The feature vectors are input to one or more support vector machine classifiers, which generate an output representing a probability of a match with an item. The distance between the bounding box and a joint associated with the item is used to modify the probability. The modified probabilities for the support vector machine are then compared with a threshold and each other to identify the item.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021406960A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021406960A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021406960A13</originalsourceid><addsrcrecordid>eNrjZJDx8vf0C9F1cgx2dVHwDHH1VQhydfZ39_MM8fT342FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhiYGZpZmBo6GxsSpAgDxkiGz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>JOINT-BASED ITEM RECOGNITION</title><source>esp@cenet</source><creator>Hara, Kota ; Piramuthu, Robinson ; Jagadeesh, Vignesh</creator><creatorcontrib>Hara, Kota ; Piramuthu, Robinson ; Jagadeesh, Vignesh</creatorcontrib><description>For an input image of a person, a set of object proposals are generated in the form of bounding boxes. A pose detector identifies coordinates in the image corresponding to locations on the person's body, such as the waist, head, hands, and feet of the person. A convolutional neural network receives the portions of the input image defined by the bounding boxes and generates a feature vector for each image portion. The feature vectors are input to one or more support vector machine classifiers, which generate an output representing a probability of a match with an item. The distance between the bounding box and a joint associated with the item is used to modify the probability. The modified probabilities for the support vector machine are then compared with a threshold and each other to identify the item.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211230&amp;DB=EPODOC&amp;CC=US&amp;NR=2021406960A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211230&amp;DB=EPODOC&amp;CC=US&amp;NR=2021406960A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hara, Kota</creatorcontrib><creatorcontrib>Piramuthu, Robinson</creatorcontrib><creatorcontrib>Jagadeesh, Vignesh</creatorcontrib><title>JOINT-BASED ITEM RECOGNITION</title><description>For an input image of a person, a set of object proposals are generated in the form of bounding boxes. A pose detector identifies coordinates in the image corresponding to locations on the person's body, such as the waist, head, hands, and feet of the person. A convolutional neural network receives the portions of the input image defined by the bounding boxes and generates a feature vector for each image portion. The feature vectors are input to one or more support vector machine classifiers, which generate an output representing a probability of a match with an item. The distance between the bounding box and a joint associated with the item is used to modify the probability. The modified probabilities for the support vector machine are then compared with a threshold and each other to identify the item.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJDx8vf0C9F1cgx2dVHwDHH1VQhydfZ39_MM8fT342FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhiYGZpZmBo6GxsSpAgDxkiGz</recordid><startdate>20211230</startdate><enddate>20211230</enddate><creator>Hara, Kota</creator><creator>Piramuthu, Robinson</creator><creator>Jagadeesh, Vignesh</creator><scope>EVB</scope></search><sort><creationdate>20211230</creationdate><title>JOINT-BASED ITEM RECOGNITION</title><author>Hara, Kota ; Piramuthu, Robinson ; Jagadeesh, Vignesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021406960A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Hara, Kota</creatorcontrib><creatorcontrib>Piramuthu, Robinson</creatorcontrib><creatorcontrib>Jagadeesh, Vignesh</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hara, Kota</au><au>Piramuthu, Robinson</au><au>Jagadeesh, Vignesh</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>JOINT-BASED ITEM RECOGNITION</title><date>2021-12-30</date><risdate>2021</risdate><abstract>For an input image of a person, a set of object proposals are generated in the form of bounding boxes. A pose detector identifies coordinates in the image corresponding to locations on the person's body, such as the waist, head, hands, and feet of the person. A convolutional neural network receives the portions of the input image defined by the bounding boxes and generates a feature vector for each image portion. The feature vectors are input to one or more support vector machine classifiers, which generate an output representing a probability of a match with an item. The distance between the bounding box and a joint associated with the item is used to modify the probability. The modified probabilities for the support vector machine are then compared with a threshold and each other to identify the item.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021406960A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title JOINT-BASED ITEM RECOGNITION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hara,%20Kota&rft.date=2021-12-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021406960A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true