ALLREDUCE ENHANCED DIRECT MEMORY ACCESS FUNCTIONALITY

Systems, apparatuses, and methods for performing an allreduce operation on an enhanced direct memory access (DMA) engine are disclosed. A system implements a machine learning application which includes a first kernel and a second kernel. The first kernel corresponds to a first portion of a machine l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vishnu, Abhinav, Greathouse, Joseph Lee
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Vishnu, Abhinav
Greathouse, Joseph Lee
description Systems, apparatuses, and methods for performing an allreduce operation on an enhanced direct memory access (DMA) engine are disclosed. A system implements a machine learning application which includes a first kernel and a second kernel. The first kernel corresponds to a first portion of a machine learning model while the second kernel corresponds to a second portion of the machine learning model. The first kernel is invoked on a plurality of compute units and the second kernel is converted into commands executable by an enhanced DMA engine to perform a collective communication operation. The first kernel is executed on the plurality of compute units in parallel with the enhanced DMA engine executing the commands for performing the collective communication operation. As a result, the allreduce operation may be executed in parallel on the enhanced DMA engine to the compute units.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021406209A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021406209A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021406209A13</originalsourceid><addsrcrecordid>eNrjZDB19PEJcnUJdXZVcPXzcPRzdnVRcPEMcnUOUfB19fUPilRwdHZ2DQ5WcAv1cw7x9Pdz9PEMieRhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRoYmBmZGBpaOhsbEqQIAi9Aomg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ALLREDUCE ENHANCED DIRECT MEMORY ACCESS FUNCTIONALITY</title><source>esp@cenet</source><creator>Vishnu, Abhinav ; Greathouse, Joseph Lee</creator><creatorcontrib>Vishnu, Abhinav ; Greathouse, Joseph Lee</creatorcontrib><description>Systems, apparatuses, and methods for performing an allreduce operation on an enhanced direct memory access (DMA) engine are disclosed. A system implements a machine learning application which includes a first kernel and a second kernel. The first kernel corresponds to a first portion of a machine learning model while the second kernel corresponds to a second portion of the machine learning model. The first kernel is invoked on a plurality of compute units and the second kernel is converted into commands executable by an enhanced DMA engine to perform a collective communication operation. The first kernel is executed on the plurality of compute units in parallel with the enhanced DMA engine executing the commands for performing the collective communication operation. As a result, the allreduce operation may be executed in parallel on the enhanced DMA engine to the compute units.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211230&amp;DB=EPODOC&amp;CC=US&amp;NR=2021406209A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211230&amp;DB=EPODOC&amp;CC=US&amp;NR=2021406209A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Vishnu, Abhinav</creatorcontrib><creatorcontrib>Greathouse, Joseph Lee</creatorcontrib><title>ALLREDUCE ENHANCED DIRECT MEMORY ACCESS FUNCTIONALITY</title><description>Systems, apparatuses, and methods for performing an allreduce operation on an enhanced direct memory access (DMA) engine are disclosed. A system implements a machine learning application which includes a first kernel and a second kernel. The first kernel corresponds to a first portion of a machine learning model while the second kernel corresponds to a second portion of the machine learning model. The first kernel is invoked on a plurality of compute units and the second kernel is converted into commands executable by an enhanced DMA engine to perform a collective communication operation. The first kernel is executed on the plurality of compute units in parallel with the enhanced DMA engine executing the commands for performing the collective communication operation. As a result, the allreduce operation may be executed in parallel on the enhanced DMA engine to the compute units.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB19PEJcnUJdXZVcPXzcPRzdnVRcPEMcnUOUfB19fUPilRwdHZ2DQ5WcAv1cw7x9Pdz9PEMieRhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRoYmBmZGBpaOhsbEqQIAi9Aomg</recordid><startdate>20211230</startdate><enddate>20211230</enddate><creator>Vishnu, Abhinav</creator><creator>Greathouse, Joseph Lee</creator><scope>EVB</scope></search><sort><creationdate>20211230</creationdate><title>ALLREDUCE ENHANCED DIRECT MEMORY ACCESS FUNCTIONALITY</title><author>Vishnu, Abhinav ; Greathouse, Joseph Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021406209A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Vishnu, Abhinav</creatorcontrib><creatorcontrib>Greathouse, Joseph Lee</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vishnu, Abhinav</au><au>Greathouse, Joseph Lee</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ALLREDUCE ENHANCED DIRECT MEMORY ACCESS FUNCTIONALITY</title><date>2021-12-30</date><risdate>2021</risdate><abstract>Systems, apparatuses, and methods for performing an allreduce operation on an enhanced direct memory access (DMA) engine are disclosed. A system implements a machine learning application which includes a first kernel and a second kernel. The first kernel corresponds to a first portion of a machine learning model while the second kernel corresponds to a second portion of the machine learning model. The first kernel is invoked on a plurality of compute units and the second kernel is converted into commands executable by an enhanced DMA engine to perform a collective communication operation. The first kernel is executed on the plurality of compute units in parallel with the enhanced DMA engine executing the commands for performing the collective communication operation. As a result, the allreduce operation may be executed in parallel on the enhanced DMA engine to the compute units.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021406209A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title ALLREDUCE ENHANCED DIRECT MEMORY ACCESS FUNCTIONALITY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Vishnu,%20Abhinav&rft.date=2021-12-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021406209A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true