ANOMALY DETECTION AND TUNING RECOMMENDATION SYSTEM

Systems and methods are provided for detecting anomalies on multiple layers of a computer system, such as a compute server. For example, the system can detect anomalies from the lower firmware layer up to the upper application layer of the compute server. The system collects train data from the comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LANGE, Klaus-Dieter, RAWTANI, Nishant, ESTEPP, Craig Allan, KUMAR, Mukund, BHATNAGAR, Prateek, SAI RAJESH, Nalamati
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LANGE, Klaus-Dieter
RAWTANI, Nishant
ESTEPP, Craig Allan
KUMAR, Mukund
BHATNAGAR, Prateek
SAI RAJESH, Nalamati
description Systems and methods are provided for detecting anomalies on multiple layers of a computer system, such as a compute server. For example, the system can detect anomalies from the lower firmware layer up to the upper application layer of the compute server. The system collects train data from the computer system that is under testing. The train data includes features that affect performance metrics, as defined by a selected benchmark. This train data is used in training machine learning (ML) models. The ML models create a train snapshot corresponding to the selected benchmark. Additionally with every new release, a test snapshot can be created corresponding to the selected benchmark or workload. The system can detect an anomaly based on the train snapshot and the test snapshot. Also, the system can recommend tunings for a best set of features based upon data collected over generations of compute server.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021406146A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021406146A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021406146A13</originalsourceid><addsrcrecordid>eNrjZDBy9PP3dfSJVHBxDXF1DvH091Nw9HNRCAn18_RzVwhydfb39XX1c3EEywRHBoe4-vIwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDI0MTAzNDEzNHQ2PiVAEAKuQn8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ANOMALY DETECTION AND TUNING RECOMMENDATION SYSTEM</title><source>esp@cenet</source><creator>LANGE, Klaus-Dieter ; RAWTANI, Nishant ; ESTEPP, Craig Allan ; KUMAR, Mukund ; BHATNAGAR, Prateek ; SAI RAJESH, Nalamati</creator><creatorcontrib>LANGE, Klaus-Dieter ; RAWTANI, Nishant ; ESTEPP, Craig Allan ; KUMAR, Mukund ; BHATNAGAR, Prateek ; SAI RAJESH, Nalamati</creatorcontrib><description>Systems and methods are provided for detecting anomalies on multiple layers of a computer system, such as a compute server. For example, the system can detect anomalies from the lower firmware layer up to the upper application layer of the compute server. The system collects train data from the computer system that is under testing. The train data includes features that affect performance metrics, as defined by a selected benchmark. This train data is used in training machine learning (ML) models. The ML models create a train snapshot corresponding to the selected benchmark. Additionally with every new release, a test snapshot can be created corresponding to the selected benchmark or workload. The system can detect an anomaly based on the train snapshot and the test snapshot. Also, the system can recommend tunings for a best set of features based upon data collected over generations of compute server.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211230&amp;DB=EPODOC&amp;CC=US&amp;NR=2021406146A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211230&amp;DB=EPODOC&amp;CC=US&amp;NR=2021406146A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LANGE, Klaus-Dieter</creatorcontrib><creatorcontrib>RAWTANI, Nishant</creatorcontrib><creatorcontrib>ESTEPP, Craig Allan</creatorcontrib><creatorcontrib>KUMAR, Mukund</creatorcontrib><creatorcontrib>BHATNAGAR, Prateek</creatorcontrib><creatorcontrib>SAI RAJESH, Nalamati</creatorcontrib><title>ANOMALY DETECTION AND TUNING RECOMMENDATION SYSTEM</title><description>Systems and methods are provided for detecting anomalies on multiple layers of a computer system, such as a compute server. For example, the system can detect anomalies from the lower firmware layer up to the upper application layer of the compute server. The system collects train data from the computer system that is under testing. The train data includes features that affect performance metrics, as defined by a selected benchmark. This train data is used in training machine learning (ML) models. The ML models create a train snapshot corresponding to the selected benchmark. Additionally with every new release, a test snapshot can be created corresponding to the selected benchmark or workload. The system can detect an anomaly based on the train snapshot and the test snapshot. Also, the system can recommend tunings for a best set of features based upon data collected over generations of compute server.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBy9PP3dfSJVHBxDXF1DvH091Nw9HNRCAn18_RzVwhydfb39XX1c3EEywRHBoe4-vIwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDI0MTAzNDEzNHQ2PiVAEAKuQn8w</recordid><startdate>20211230</startdate><enddate>20211230</enddate><creator>LANGE, Klaus-Dieter</creator><creator>RAWTANI, Nishant</creator><creator>ESTEPP, Craig Allan</creator><creator>KUMAR, Mukund</creator><creator>BHATNAGAR, Prateek</creator><creator>SAI RAJESH, Nalamati</creator><scope>EVB</scope></search><sort><creationdate>20211230</creationdate><title>ANOMALY DETECTION AND TUNING RECOMMENDATION SYSTEM</title><author>LANGE, Klaus-Dieter ; RAWTANI, Nishant ; ESTEPP, Craig Allan ; KUMAR, Mukund ; BHATNAGAR, Prateek ; SAI RAJESH, Nalamati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021406146A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LANGE, Klaus-Dieter</creatorcontrib><creatorcontrib>RAWTANI, Nishant</creatorcontrib><creatorcontrib>ESTEPP, Craig Allan</creatorcontrib><creatorcontrib>KUMAR, Mukund</creatorcontrib><creatorcontrib>BHATNAGAR, Prateek</creatorcontrib><creatorcontrib>SAI RAJESH, Nalamati</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LANGE, Klaus-Dieter</au><au>RAWTANI, Nishant</au><au>ESTEPP, Craig Allan</au><au>KUMAR, Mukund</au><au>BHATNAGAR, Prateek</au><au>SAI RAJESH, Nalamati</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ANOMALY DETECTION AND TUNING RECOMMENDATION SYSTEM</title><date>2021-12-30</date><risdate>2021</risdate><abstract>Systems and methods are provided for detecting anomalies on multiple layers of a computer system, such as a compute server. For example, the system can detect anomalies from the lower firmware layer up to the upper application layer of the compute server. The system collects train data from the computer system that is under testing. The train data includes features that affect performance metrics, as defined by a selected benchmark. This train data is used in training machine learning (ML) models. The ML models create a train snapshot corresponding to the selected benchmark. Additionally with every new release, a test snapshot can be created corresponding to the selected benchmark or workload. The system can detect an anomaly based on the train snapshot and the test snapshot. Also, the system can recommend tunings for a best set of features based upon data collected over generations of compute server.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021406146A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title ANOMALY DETECTION AND TUNING RECOMMENDATION SYSTEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LANGE,%20Klaus-Dieter&rft.date=2021-12-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021406146A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true