ANOMALY DETECTION AND TUNING RECOMMENDATION SYSTEM
Systems and methods are provided for detecting anomalies on multiple layers of a computer system, such as a compute server. For example, the system can detect anomalies from the lower firmware layer up to the upper application layer of the compute server. The system collects train data from the comp...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LANGE, Klaus-Dieter RAWTANI, Nishant ESTEPP, Craig Allan KUMAR, Mukund BHATNAGAR, Prateek SAI RAJESH, Nalamati |
description | Systems and methods are provided for detecting anomalies on multiple layers of a computer system, such as a compute server. For example, the system can detect anomalies from the lower firmware layer up to the upper application layer of the compute server. The system collects train data from the computer system that is under testing. The train data includes features that affect performance metrics, as defined by a selected benchmark. This train data is used in training machine learning (ML) models. The ML models create a train snapshot corresponding to the selected benchmark. Additionally with every new release, a test snapshot can be created corresponding to the selected benchmark or workload. The system can detect an anomaly based on the train snapshot and the test snapshot. Also, the system can recommend tunings for a best set of features based upon data collected over generations of compute server. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021406146A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021406146A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021406146A13</originalsourceid><addsrcrecordid>eNrjZDBy9PP3dfSJVHBxDXF1DvH091Nw9HNRCAn18_RzVwhydfb39XX1c3EEywRHBoe4-vIwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDI0MTAzNDEzNHQ2PiVAEAKuQn8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ANOMALY DETECTION AND TUNING RECOMMENDATION SYSTEM</title><source>esp@cenet</source><creator>LANGE, Klaus-Dieter ; RAWTANI, Nishant ; ESTEPP, Craig Allan ; KUMAR, Mukund ; BHATNAGAR, Prateek ; SAI RAJESH, Nalamati</creator><creatorcontrib>LANGE, Klaus-Dieter ; RAWTANI, Nishant ; ESTEPP, Craig Allan ; KUMAR, Mukund ; BHATNAGAR, Prateek ; SAI RAJESH, Nalamati</creatorcontrib><description>Systems and methods are provided for detecting anomalies on multiple layers of a computer system, such as a compute server. For example, the system can detect anomalies from the lower firmware layer up to the upper application layer of the compute server. The system collects train data from the computer system that is under testing. The train data includes features that affect performance metrics, as defined by a selected benchmark. This train data is used in training machine learning (ML) models. The ML models create a train snapshot corresponding to the selected benchmark. Additionally with every new release, a test snapshot can be created corresponding to the selected benchmark or workload. The system can detect an anomaly based on the train snapshot and the test snapshot. Also, the system can recommend tunings for a best set of features based upon data collected over generations of compute server.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211230&DB=EPODOC&CC=US&NR=2021406146A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211230&DB=EPODOC&CC=US&NR=2021406146A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LANGE, Klaus-Dieter</creatorcontrib><creatorcontrib>RAWTANI, Nishant</creatorcontrib><creatorcontrib>ESTEPP, Craig Allan</creatorcontrib><creatorcontrib>KUMAR, Mukund</creatorcontrib><creatorcontrib>BHATNAGAR, Prateek</creatorcontrib><creatorcontrib>SAI RAJESH, Nalamati</creatorcontrib><title>ANOMALY DETECTION AND TUNING RECOMMENDATION SYSTEM</title><description>Systems and methods are provided for detecting anomalies on multiple layers of a computer system, such as a compute server. For example, the system can detect anomalies from the lower firmware layer up to the upper application layer of the compute server. The system collects train data from the computer system that is under testing. The train data includes features that affect performance metrics, as defined by a selected benchmark. This train data is used in training machine learning (ML) models. The ML models create a train snapshot corresponding to the selected benchmark. Additionally with every new release, a test snapshot can be created corresponding to the selected benchmark or workload. The system can detect an anomaly based on the train snapshot and the test snapshot. Also, the system can recommend tunings for a best set of features based upon data collected over generations of compute server.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBy9PP3dfSJVHBxDXF1DvH091Nw9HNRCAn18_RzVwhydfb39XX1c3EEywRHBoe4-vIwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDI0MTAzNDEzNHQ2PiVAEAKuQn8w</recordid><startdate>20211230</startdate><enddate>20211230</enddate><creator>LANGE, Klaus-Dieter</creator><creator>RAWTANI, Nishant</creator><creator>ESTEPP, Craig Allan</creator><creator>KUMAR, Mukund</creator><creator>BHATNAGAR, Prateek</creator><creator>SAI RAJESH, Nalamati</creator><scope>EVB</scope></search><sort><creationdate>20211230</creationdate><title>ANOMALY DETECTION AND TUNING RECOMMENDATION SYSTEM</title><author>LANGE, Klaus-Dieter ; RAWTANI, Nishant ; ESTEPP, Craig Allan ; KUMAR, Mukund ; BHATNAGAR, Prateek ; SAI RAJESH, Nalamati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021406146A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LANGE, Klaus-Dieter</creatorcontrib><creatorcontrib>RAWTANI, Nishant</creatorcontrib><creatorcontrib>ESTEPP, Craig Allan</creatorcontrib><creatorcontrib>KUMAR, Mukund</creatorcontrib><creatorcontrib>BHATNAGAR, Prateek</creatorcontrib><creatorcontrib>SAI RAJESH, Nalamati</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LANGE, Klaus-Dieter</au><au>RAWTANI, Nishant</au><au>ESTEPP, Craig Allan</au><au>KUMAR, Mukund</au><au>BHATNAGAR, Prateek</au><au>SAI RAJESH, Nalamati</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ANOMALY DETECTION AND TUNING RECOMMENDATION SYSTEM</title><date>2021-12-30</date><risdate>2021</risdate><abstract>Systems and methods are provided for detecting anomalies on multiple layers of a computer system, such as a compute server. For example, the system can detect anomalies from the lower firmware layer up to the upper application layer of the compute server. The system collects train data from the computer system that is under testing. The train data includes features that affect performance metrics, as defined by a selected benchmark. This train data is used in training machine learning (ML) models. The ML models create a train snapshot corresponding to the selected benchmark. Additionally with every new release, a test snapshot can be created corresponding to the selected benchmark or workload. The system can detect an anomaly based on the train snapshot and the test snapshot. Also, the system can recommend tunings for a best set of features based upon data collected over generations of compute server.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021406146A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | ANOMALY DETECTION AND TUNING RECOMMENDATION SYSTEM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LANGE,%20Klaus-Dieter&rft.date=2021-12-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021406146A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |