System and Method for Thermally Cracking Ammonia
Systems and methods are provided herein to thermally activate a nitrogen-containing gas at lower activation temperatures (e.g., below 2000 C) than conventional hot-wire heating methods, while more effectively heating larger gas volumes. In the disclosed embodiments, a gas activation chamber is provi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Dip, Anthony |
description | Systems and methods are provided herein to thermally activate a nitrogen-containing gas at lower activation temperatures (e.g., below 2000 C) than conventional hot-wire heating methods, while more effectively heating larger gas volumes. In the disclosed embodiments, a gas activation chamber is provided within a deposition system for thermally activating a nitrogen-containing gas. In one example, ammonia (NH3) may be thermally activated within the gas activation chamber to generate ammonia radicals and/or hydrazine compounds before the ammonia, ammonia radicals and/or hydrazine compounds are delivered to the substrate surface. Because ammonia radicals and hydrazine compounds are significantly more reactive than ammonia, especially at lower substrate temperatures (e.g., |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021395883A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021395883A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021395883A13</originalsourceid><addsrcrecordid>eNrjZDAIriwuSc1VSMxLUfBNLcnIT1FIyy9SCMlILcpNzMmpVHAuSkzOzsxLV3DMzc3Py0zkYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkaGxpamFhbGjobGxKkCANc3K9M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and Method for Thermally Cracking Ammonia</title><source>esp@cenet</source><creator>Dip, Anthony</creator><creatorcontrib>Dip, Anthony</creatorcontrib><description>Systems and methods are provided herein to thermally activate a nitrogen-containing gas at lower activation temperatures (e.g., below 2000 C) than conventional hot-wire heating methods, while more effectively heating larger gas volumes. In the disclosed embodiments, a gas activation chamber is provided within a deposition system for thermally activating a nitrogen-containing gas. In one example, ammonia (NH3) may be thermally activated within the gas activation chamber to generate ammonia radicals and/or hydrazine compounds before the ammonia, ammonia radicals and/or hydrazine compounds are delivered to the substrate surface. Because ammonia radicals and hydrazine compounds are significantly more reactive than ammonia, especially at lower substrate temperatures (e.g., <900 C), ammonia radicals and hydrazine compounds can be more effectively used to deposit nitride layers (such as silicon nitride) over a broader range of substrate temperatures.</description><language>eng</language><subject>CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211223&DB=EPODOC&CC=US&NR=2021395883A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211223&DB=EPODOC&CC=US&NR=2021395883A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Dip, Anthony</creatorcontrib><title>System and Method for Thermally Cracking Ammonia</title><description>Systems and methods are provided herein to thermally activate a nitrogen-containing gas at lower activation temperatures (e.g., below 2000 C) than conventional hot-wire heating methods, while more effectively heating larger gas volumes. In the disclosed embodiments, a gas activation chamber is provided within a deposition system for thermally activating a nitrogen-containing gas. In one example, ammonia (NH3) may be thermally activated within the gas activation chamber to generate ammonia radicals and/or hydrazine compounds before the ammonia, ammonia radicals and/or hydrazine compounds are delivered to the substrate surface. Because ammonia radicals and hydrazine compounds are significantly more reactive than ammonia, especially at lower substrate temperatures (e.g., <900 C), ammonia radicals and hydrazine compounds can be more effectively used to deposit nitride layers (such as silicon nitride) over a broader range of substrate temperatures.</description><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAIriwuSc1VSMxLUfBNLcnIT1FIyy9SCMlILcpNzMmpVHAuSkzOzsxLV3DMzc3Py0zkYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkaGxpamFhbGjobGxKkCANc3K9M</recordid><startdate>20211223</startdate><enddate>20211223</enddate><creator>Dip, Anthony</creator><scope>EVB</scope></search><sort><creationdate>20211223</creationdate><title>System and Method for Thermally Cracking Ammonia</title><author>Dip, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021395883A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>Dip, Anthony</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dip, Anthony</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and Method for Thermally Cracking Ammonia</title><date>2021-12-23</date><risdate>2021</risdate><abstract>Systems and methods are provided herein to thermally activate a nitrogen-containing gas at lower activation temperatures (e.g., below 2000 C) than conventional hot-wire heating methods, while more effectively heating larger gas volumes. In the disclosed embodiments, a gas activation chamber is provided within a deposition system for thermally activating a nitrogen-containing gas. In one example, ammonia (NH3) may be thermally activated within the gas activation chamber to generate ammonia radicals and/or hydrazine compounds before the ammonia, ammonia radicals and/or hydrazine compounds are delivered to the substrate surface. Because ammonia radicals and hydrazine compounds are significantly more reactive than ammonia, especially at lower substrate temperatures (e.g., <900 C), ammonia radicals and hydrazine compounds can be more effectively used to deposit nitride layers (such as silicon nitride) over a broader range of substrate temperatures.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021395883A1 |
source | esp@cenet |
subjects | CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION |
title | System and Method for Thermally Cracking Ammonia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Dip,%20Anthony&rft.date=2021-12-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021395883A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |