System and Method for Thermally Cracking Ammonia

Systems and methods are provided herein to thermally activate a nitrogen-containing gas at lower activation temperatures (e.g., below 2000 C) than conventional hot-wire heating methods, while more effectively heating larger gas volumes. In the disclosed embodiments, a gas activation chamber is provi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dip, Anthony
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Dip, Anthony
description Systems and methods are provided herein to thermally activate a nitrogen-containing gas at lower activation temperatures (e.g., below 2000 C) than conventional hot-wire heating methods, while more effectively heating larger gas volumes. In the disclosed embodiments, a gas activation chamber is provided within a deposition system for thermally activating a nitrogen-containing gas. In one example, ammonia (NH3) may be thermally activated within the gas activation chamber to generate ammonia radicals and/or hydrazine compounds before the ammonia, ammonia radicals and/or hydrazine compounds are delivered to the substrate surface. Because ammonia radicals and hydrazine compounds are significantly more reactive than ammonia, especially at lower substrate temperatures (e.g.,
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021395883A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021395883A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021395883A13</originalsourceid><addsrcrecordid>eNrjZDAIriwuSc1VSMxLUfBNLcnIT1FIyy9SCMlILcpNzMmpVHAuSkzOzsxLV3DMzc3Py0zkYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkaGxpamFhbGjobGxKkCANc3K9M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and Method for Thermally Cracking Ammonia</title><source>esp@cenet</source><creator>Dip, Anthony</creator><creatorcontrib>Dip, Anthony</creatorcontrib><description>Systems and methods are provided herein to thermally activate a nitrogen-containing gas at lower activation temperatures (e.g., below 2000 C) than conventional hot-wire heating methods, while more effectively heating larger gas volumes. In the disclosed embodiments, a gas activation chamber is provided within a deposition system for thermally activating a nitrogen-containing gas. In one example, ammonia (NH3) may be thermally activated within the gas activation chamber to generate ammonia radicals and/or hydrazine compounds before the ammonia, ammonia radicals and/or hydrazine compounds are delivered to the substrate surface. Because ammonia radicals and hydrazine compounds are significantly more reactive than ammonia, especially at lower substrate temperatures (e.g., &lt;900 C), ammonia radicals and hydrazine compounds can be more effectively used to deposit nitride layers (such as silicon nitride) over a broader range of substrate temperatures.</description><language>eng</language><subject>CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211223&amp;DB=EPODOC&amp;CC=US&amp;NR=2021395883A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211223&amp;DB=EPODOC&amp;CC=US&amp;NR=2021395883A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Dip, Anthony</creatorcontrib><title>System and Method for Thermally Cracking Ammonia</title><description>Systems and methods are provided herein to thermally activate a nitrogen-containing gas at lower activation temperatures (e.g., below 2000 C) than conventional hot-wire heating methods, while more effectively heating larger gas volumes. In the disclosed embodiments, a gas activation chamber is provided within a deposition system for thermally activating a nitrogen-containing gas. In one example, ammonia (NH3) may be thermally activated within the gas activation chamber to generate ammonia radicals and/or hydrazine compounds before the ammonia, ammonia radicals and/or hydrazine compounds are delivered to the substrate surface. Because ammonia radicals and hydrazine compounds are significantly more reactive than ammonia, especially at lower substrate temperatures (e.g., &lt;900 C), ammonia radicals and hydrazine compounds can be more effectively used to deposit nitride layers (such as silicon nitride) over a broader range of substrate temperatures.</description><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAIriwuSc1VSMxLUfBNLcnIT1FIyy9SCMlILcpNzMmpVHAuSkzOzsxLV3DMzc3Py0zkYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkaGxpamFhbGjobGxKkCANc3K9M</recordid><startdate>20211223</startdate><enddate>20211223</enddate><creator>Dip, Anthony</creator><scope>EVB</scope></search><sort><creationdate>20211223</creationdate><title>System and Method for Thermally Cracking Ammonia</title><author>Dip, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021395883A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>Dip, Anthony</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dip, Anthony</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and Method for Thermally Cracking Ammonia</title><date>2021-12-23</date><risdate>2021</risdate><abstract>Systems and methods are provided herein to thermally activate a nitrogen-containing gas at lower activation temperatures (e.g., below 2000 C) than conventional hot-wire heating methods, while more effectively heating larger gas volumes. In the disclosed embodiments, a gas activation chamber is provided within a deposition system for thermally activating a nitrogen-containing gas. In one example, ammonia (NH3) may be thermally activated within the gas activation chamber to generate ammonia radicals and/or hydrazine compounds before the ammonia, ammonia radicals and/or hydrazine compounds are delivered to the substrate surface. Because ammonia radicals and hydrazine compounds are significantly more reactive than ammonia, especially at lower substrate temperatures (e.g., &lt;900 C), ammonia radicals and hydrazine compounds can be more effectively used to deposit nitride layers (such as silicon nitride) over a broader range of substrate temperatures.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021395883A1
source esp@cenet
subjects CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
METALLURGY
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
title System and Method for Thermally Cracking Ammonia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Dip,%20Anthony&rft.date=2021-12-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021395883A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true