Automated Hardware Resource Optimization
An automated hardware resource optimization system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor is configured to execute the software code to identify computing hardware for hosting a neural network based application, d...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Farre Guiu, Miquel Angel Pujol, Jordi Badia Martin, Marc Junyent |
description | An automated hardware resource optimization system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor is configured to execute the software code to identify computing hardware for hosting a neural network based application, determine, based on a first performance parameter of the computing hardware, a batch size for performing data processing using the neural network based application, and tune, using a data batch having the determined batch size, a second performance parameter of the computing hardware to enable substantially continuous loading of its hardware processor memory. The software code also optimizes, based on the determined batch size and the tuned second performance parameter, a process flow for performing the data processing, and generates a configuration file identifying the computing hardware, the neural network based application, the determined batch size, the tuned second performance parameter, and the optimized process flow. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021389989A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021389989A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021389989A13</originalsourceid><addsrcrecordid>eNrjZNBwLC3Jz00sSU1R8EgsSilPLEpVCEotzi8tSk5V8C8oyczNrEosyczP42FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhsYWlpYWlo6GxsSpAgCQaymq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automated Hardware Resource Optimization</title><source>esp@cenet</source><creator>Farre Guiu, Miquel Angel ; Pujol, Jordi Badia ; Martin, Marc Junyent</creator><creatorcontrib>Farre Guiu, Miquel Angel ; Pujol, Jordi Badia ; Martin, Marc Junyent</creatorcontrib><description>An automated hardware resource optimization system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor is configured to execute the software code to identify computing hardware for hosting a neural network based application, determine, based on a first performance parameter of the computing hardware, a batch size for performing data processing using the neural network based application, and tune, using a data batch having the determined batch size, a second performance parameter of the computing hardware to enable substantially continuous loading of its hardware processor memory. The software code also optimizes, based on the determined batch size and the tuned second performance parameter, a process flow for performing the data processing, and generates a configuration file identifying the computing hardware, the neural network based application, the determined batch size, the tuned second performance parameter, and the optimized process flow.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211216&DB=EPODOC&CC=US&NR=2021389989A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211216&DB=EPODOC&CC=US&NR=2021389989A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Farre Guiu, Miquel Angel</creatorcontrib><creatorcontrib>Pujol, Jordi Badia</creatorcontrib><creatorcontrib>Martin, Marc Junyent</creatorcontrib><title>Automated Hardware Resource Optimization</title><description>An automated hardware resource optimization system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor is configured to execute the software code to identify computing hardware for hosting a neural network based application, determine, based on a first performance parameter of the computing hardware, a batch size for performing data processing using the neural network based application, and tune, using a data batch having the determined batch size, a second performance parameter of the computing hardware to enable substantially continuous loading of its hardware processor memory. The software code also optimizes, based on the determined batch size and the tuned second performance parameter, a process flow for performing the data processing, and generates a configuration file identifying the computing hardware, the neural network based application, the determined batch size, the tuned second performance parameter, and the optimized process flow.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBwLC3Jz00sSU1R8EgsSilPLEpVCEotzi8tSk5V8C8oyczNrEosyczP42FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhsYWlpYWlo6GxsSpAgCQaymq</recordid><startdate>20211216</startdate><enddate>20211216</enddate><creator>Farre Guiu, Miquel Angel</creator><creator>Pujol, Jordi Badia</creator><creator>Martin, Marc Junyent</creator><scope>EVB</scope></search><sort><creationdate>20211216</creationdate><title>Automated Hardware Resource Optimization</title><author>Farre Guiu, Miquel Angel ; Pujol, Jordi Badia ; Martin, Marc Junyent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021389989A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Farre Guiu, Miquel Angel</creatorcontrib><creatorcontrib>Pujol, Jordi Badia</creatorcontrib><creatorcontrib>Martin, Marc Junyent</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farre Guiu, Miquel Angel</au><au>Pujol, Jordi Badia</au><au>Martin, Marc Junyent</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automated Hardware Resource Optimization</title><date>2021-12-16</date><risdate>2021</risdate><abstract>An automated hardware resource optimization system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor is configured to execute the software code to identify computing hardware for hosting a neural network based application, determine, based on a first performance parameter of the computing hardware, a batch size for performing data processing using the neural network based application, and tune, using a data batch having the determined batch size, a second performance parameter of the computing hardware to enable substantially continuous loading of its hardware processor memory. The software code also optimizes, based on the determined batch size and the tuned second performance parameter, a process flow for performing the data processing, and generates a configuration file identifying the computing hardware, the neural network based application, the determined batch size, the tuned second performance parameter, and the optimized process flow.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021389989A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Automated Hardware Resource Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Farre%20Guiu,%20Miquel%20Angel&rft.date=2021-12-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021389989A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |