Automated Hardware Resource Optimization

An automated hardware resource optimization system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor is configured to execute the software code to identify computing hardware for hosting a neural network based application, d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Farre Guiu, Miquel Angel, Pujol, Jordi Badia, Martin, Marc Junyent
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Farre Guiu, Miquel Angel
Pujol, Jordi Badia
Martin, Marc Junyent
description An automated hardware resource optimization system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor is configured to execute the software code to identify computing hardware for hosting a neural network based application, determine, based on a first performance parameter of the computing hardware, a batch size for performing data processing using the neural network based application, and tune, using a data batch having the determined batch size, a second performance parameter of the computing hardware to enable substantially continuous loading of its hardware processor memory. The software code also optimizes, based on the determined batch size and the tuned second performance parameter, a process flow for performing the data processing, and generates a configuration file identifying the computing hardware, the neural network based application, the determined batch size, the tuned second performance parameter, and the optimized process flow.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021389989A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021389989A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021389989A13</originalsourceid><addsrcrecordid>eNrjZNBwLC3Jz00sSU1R8EgsSilPLEpVCEotzi8tSk5V8C8oyczNrEosyczP42FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhsYWlpYWlo6GxsSpAgCQaymq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automated Hardware Resource Optimization</title><source>esp@cenet</source><creator>Farre Guiu, Miquel Angel ; Pujol, Jordi Badia ; Martin, Marc Junyent</creator><creatorcontrib>Farre Guiu, Miquel Angel ; Pujol, Jordi Badia ; Martin, Marc Junyent</creatorcontrib><description>An automated hardware resource optimization system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor is configured to execute the software code to identify computing hardware for hosting a neural network based application, determine, based on a first performance parameter of the computing hardware, a batch size for performing data processing using the neural network based application, and tune, using a data batch having the determined batch size, a second performance parameter of the computing hardware to enable substantially continuous loading of its hardware processor memory. The software code also optimizes, based on the determined batch size and the tuned second performance parameter, a process flow for performing the data processing, and generates a configuration file identifying the computing hardware, the neural network based application, the determined batch size, the tuned second performance parameter, and the optimized process flow.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211216&amp;DB=EPODOC&amp;CC=US&amp;NR=2021389989A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211216&amp;DB=EPODOC&amp;CC=US&amp;NR=2021389989A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Farre Guiu, Miquel Angel</creatorcontrib><creatorcontrib>Pujol, Jordi Badia</creatorcontrib><creatorcontrib>Martin, Marc Junyent</creatorcontrib><title>Automated Hardware Resource Optimization</title><description>An automated hardware resource optimization system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor is configured to execute the software code to identify computing hardware for hosting a neural network based application, determine, based on a first performance parameter of the computing hardware, a batch size for performing data processing using the neural network based application, and tune, using a data batch having the determined batch size, a second performance parameter of the computing hardware to enable substantially continuous loading of its hardware processor memory. The software code also optimizes, based on the determined batch size and the tuned second performance parameter, a process flow for performing the data processing, and generates a configuration file identifying the computing hardware, the neural network based application, the determined batch size, the tuned second performance parameter, and the optimized process flow.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBwLC3Jz00sSU1R8EgsSilPLEpVCEotzi8tSk5V8C8oyczNrEosyczP42FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhsYWlpYWlo6GxsSpAgCQaymq</recordid><startdate>20211216</startdate><enddate>20211216</enddate><creator>Farre Guiu, Miquel Angel</creator><creator>Pujol, Jordi Badia</creator><creator>Martin, Marc Junyent</creator><scope>EVB</scope></search><sort><creationdate>20211216</creationdate><title>Automated Hardware Resource Optimization</title><author>Farre Guiu, Miquel Angel ; Pujol, Jordi Badia ; Martin, Marc Junyent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021389989A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Farre Guiu, Miquel Angel</creatorcontrib><creatorcontrib>Pujol, Jordi Badia</creatorcontrib><creatorcontrib>Martin, Marc Junyent</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farre Guiu, Miquel Angel</au><au>Pujol, Jordi Badia</au><au>Martin, Marc Junyent</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automated Hardware Resource Optimization</title><date>2021-12-16</date><risdate>2021</risdate><abstract>An automated hardware resource optimization system includes a computing platform having a hardware processor and a system memory storing a software code. The hardware processor is configured to execute the software code to identify computing hardware for hosting a neural network based application, determine, based on a first performance parameter of the computing hardware, a batch size for performing data processing using the neural network based application, and tune, using a data batch having the determined batch size, a second performance parameter of the computing hardware to enable substantially continuous loading of its hardware processor memory. The software code also optimizes, based on the determined batch size and the tuned second performance parameter, a process flow for performing the data processing, and generates a configuration file identifying the computing hardware, the neural network based application, the determined batch size, the tuned second performance parameter, and the optimized process flow.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021389989A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Automated Hardware Resource Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Farre%20Guiu,%20Miquel%20Angel&rft.date=2021-12-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021389989A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true