CONTROLLING WELLBORE EQUIPMENT USING A HYBRID DEEP GENERATIVE PHYSICS NEURAL NETWORK

A system includes equipment for at least one of formation of, stimulation of, or production from a wellbore, a processor, and a non-transitory memory device. The processor is communicatively coupled to the equipment. The non-transitory memory device contains instructions executable by the processor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Madasu, Srinath
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Madasu, Srinath
description A system includes equipment for at least one of formation of, stimulation of, or production from a wellbore, a processor, and a non-transitory memory device. The processor is communicatively coupled to the equipment. The non-transitory memory device contains instructions executable by the processor to cause the processor to perform operations comprising training a hybrid deep generative physics neural network (HDGPNN), iteratively computing a plurality of projected values for wellbore variables using the HDGPNN, comparing the projected values to measured values, adjusting the projected values using the HDGPNN until the projected values match the measured values within a convergence criteria to produce an output value for at least one controllable parameter, and controlling the equipment by applying the output value for the at least one controllable parameter.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021388710A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021388710A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021388710A13</originalsourceid><addsrcrecordid>eNrjZAhx9vcLCfL38fH0c1cId_XxcfIPclVwDQz1DPB19QtRCA0GSTgqeEQ6BXm6KLi4ugYouLv6uQY5hniGuSoEeEQGezoHK_i5hgY5-gCpkHD_IG8eBta0xJziVF4ozc2g7OYa4uyhm1qQH59aXJCYnJqXWhIfGmxkYGRobGFhbmjgaGhMnCoAJPMxcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CONTROLLING WELLBORE EQUIPMENT USING A HYBRID DEEP GENERATIVE PHYSICS NEURAL NETWORK</title><source>esp@cenet</source><creator>Madasu, Srinath</creator><creatorcontrib>Madasu, Srinath</creatorcontrib><description>A system includes equipment for at least one of formation of, stimulation of, or production from a wellbore, a processor, and a non-transitory memory device. The processor is communicatively coupled to the equipment. The non-transitory memory device contains instructions executable by the processor to cause the processor to perform operations comprising training a hybrid deep generative physics neural network (HDGPNN), iteratively computing a plurality of projected values for wellbore variables using the HDGPNN, comparing the projected values to measured values, adjusting the projected values using the HDGPNN until the projected values match the measured values within a convergence criteria to produce an output value for at least one controllable parameter, and controlling the equipment by applying the output value for the at least one controllable parameter.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; ELECTRIC DIGITAL DATA PROCESSING ; FIXED CONSTRUCTIONS ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MINING ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS ; PHYSICS ; REGULATING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211216&amp;DB=EPODOC&amp;CC=US&amp;NR=2021388710A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211216&amp;DB=EPODOC&amp;CC=US&amp;NR=2021388710A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Madasu, Srinath</creatorcontrib><title>CONTROLLING WELLBORE EQUIPMENT USING A HYBRID DEEP GENERATIVE PHYSICS NEURAL NETWORK</title><description>A system includes equipment for at least one of formation of, stimulation of, or production from a wellbore, a processor, and a non-transitory memory device. The processor is communicatively coupled to the equipment. The non-transitory memory device contains instructions executable by the processor to cause the processor to perform operations comprising training a hybrid deep generative physics neural network (HDGPNN), iteratively computing a plurality of projected values for wellbore variables using the HDGPNN, comparing the projected values to measured values, adjusting the projected values using the HDGPNN until the projected values match the measured values within a convergence criteria to produce an output value for at least one controllable parameter, and controlling the equipment by applying the output value for the at least one controllable parameter.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MINING</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAhx9vcLCfL38fH0c1cId_XxcfIPclVwDQz1DPB19QtRCA0GSTgqeEQ6BXm6KLi4ugYouLv6uQY5hniGuSoEeEQGezoHK_i5hgY5-gCpkHD_IG8eBta0xJziVF4ozc2g7OYa4uyhm1qQH59aXJCYnJqXWhIfGmxkYGRobGFhbmjgaGhMnCoAJPMxcw</recordid><startdate>20211216</startdate><enddate>20211216</enddate><creator>Madasu, Srinath</creator><scope>EVB</scope></search><sort><creationdate>20211216</creationdate><title>CONTROLLING WELLBORE EQUIPMENT USING A HYBRID DEEP GENERATIVE PHYSICS NEURAL NETWORK</title><author>Madasu, Srinath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021388710A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MINING</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>Madasu, Srinath</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Madasu, Srinath</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CONTROLLING WELLBORE EQUIPMENT USING A HYBRID DEEP GENERATIVE PHYSICS NEURAL NETWORK</title><date>2021-12-16</date><risdate>2021</risdate><abstract>A system includes equipment for at least one of formation of, stimulation of, or production from a wellbore, a processor, and a non-transitory memory device. The processor is communicatively coupled to the equipment. The non-transitory memory device contains instructions executable by the processor to cause the processor to perform operations comprising training a hybrid deep generative physics neural network (HDGPNN), iteratively computing a plurality of projected values for wellbore variables using the HDGPNN, comparing the projected values to measured values, adjusting the projected values using the HDGPNN until the projected values match the measured values within a convergence criteria to produce an output value for at least one controllable parameter, and controlling the equipment by applying the output value for the at least one controllable parameter.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021388710A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
COUNTING
EARTH DRILLING
EARTH DRILLING, e.g. DEEP DRILLING
ELECTRIC DIGITAL DATA PROCESSING
FIXED CONSTRUCTIONS
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MINING
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS
PHYSICS
REGULATING
title CONTROLLING WELLBORE EQUIPMENT USING A HYBRID DEEP GENERATIVE PHYSICS NEURAL NETWORK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Madasu,%20Srinath&rft.date=2021-12-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021388710A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true