SYSTEM AND METHOD FOR INCREASING EFFICIENCY OF GRADIENT DESCENT WHILE TRAINING MACHINE-LEARNING MODELS
Systems and methods of the present disclosure provide processes for determining how much to adjust machine-learning parameter values in a direction of a gradient for gradient-descent steps in training processes for machine-learning models. Current parameter values of a machine-learning model are vec...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LAASER, William T |
description | Systems and methods of the present disclosure provide processes for determining how much to adjust machine-learning parameter values in a direction of a gradient for gradient-descent steps in training processes for machine-learning models. Current parameter values of a machine-learning model are vector components that define an initial estimate for a local extremum of a cost function used to measure how well the machine-learning model performs. The initial estimate and the gradient of the cost function for the initial estimate are used to define an auxiliary function. A root estimate is determined for the auxiliary function of the gradient. The parameters are adjusted in the direction of the gradient by an amount specified by the root estimate. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021383173A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021383173A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021383173A13</originalsourceid><addsrcrecordid>eNqNirEKwjAUALs4iPoPD5wLphl0fSQvzYM2gSRSOpUi6SRaqP-PFv0Ap-OO2xZT7GOiFtBpaClZr8H4AOxUIIzsaiBjWDE51YM3UAfUH0mgKaqVneWGIAVkt94tKsuOyoYwfIPX1MR9sZnG-5IPP-6Ko6GkbJnn55CXebzlR34N11idKiEvUpwlCvnf9QZsrzXJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR INCREASING EFFICIENCY OF GRADIENT DESCENT WHILE TRAINING MACHINE-LEARNING MODELS</title><source>esp@cenet</source><creator>LAASER, William T</creator><creatorcontrib>LAASER, William T</creatorcontrib><description>Systems and methods of the present disclosure provide processes for determining how much to adjust machine-learning parameter values in a direction of a gradient for gradient-descent steps in training processes for machine-learning models. Current parameter values of a machine-learning model are vector components that define an initial estimate for a local extremum of a cost function used to measure how well the machine-learning model performs. The initial estimate and the gradient of the cost function for the initial estimate are used to define an auxiliary function. A root estimate is determined for the auxiliary function of the gradient. The parameters are adjusted in the direction of the gradient by an amount specified by the root estimate.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211209&DB=EPODOC&CC=US&NR=2021383173A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211209&DB=EPODOC&CC=US&NR=2021383173A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LAASER, William T</creatorcontrib><title>SYSTEM AND METHOD FOR INCREASING EFFICIENCY OF GRADIENT DESCENT WHILE TRAINING MACHINE-LEARNING MODELS</title><description>Systems and methods of the present disclosure provide processes for determining how much to adjust machine-learning parameter values in a direction of a gradient for gradient-descent steps in training processes for machine-learning models. Current parameter values of a machine-learning model are vector components that define an initial estimate for a local extremum of a cost function used to measure how well the machine-learning model performs. The initial estimate and the gradient of the cost function for the initial estimate are used to define an auxiliary function. A root estimate is determined for the auxiliary function of the gradient. The parameters are adjusted in the direction of the gradient by an amount specified by the root estimate.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwjAUALs4iPoPD5wLphl0fSQvzYM2gSRSOpUi6SRaqP-PFv0Ap-OO2xZT7GOiFtBpaClZr8H4AOxUIIzsaiBjWDE51YM3UAfUH0mgKaqVneWGIAVkt94tKsuOyoYwfIPX1MR9sZnG-5IPP-6Ko6GkbJnn55CXebzlR34N11idKiEvUpwlCvnf9QZsrzXJ</recordid><startdate>20211209</startdate><enddate>20211209</enddate><creator>LAASER, William T</creator><scope>EVB</scope></search><sort><creationdate>20211209</creationdate><title>SYSTEM AND METHOD FOR INCREASING EFFICIENCY OF GRADIENT DESCENT WHILE TRAINING MACHINE-LEARNING MODELS</title><author>LAASER, William T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021383173A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LAASER, William T</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LAASER, William T</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR INCREASING EFFICIENCY OF GRADIENT DESCENT WHILE TRAINING MACHINE-LEARNING MODELS</title><date>2021-12-09</date><risdate>2021</risdate><abstract>Systems and methods of the present disclosure provide processes for determining how much to adjust machine-learning parameter values in a direction of a gradient for gradient-descent steps in training processes for machine-learning models. Current parameter values of a machine-learning model are vector components that define an initial estimate for a local extremum of a cost function used to measure how well the machine-learning model performs. The initial estimate and the gradient of the cost function for the initial estimate are used to define an auxiliary function. A root estimate is determined for the auxiliary function of the gradient. The parameters are adjusted in the direction of the gradient by an amount specified by the root estimate.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021383173A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | SYSTEM AND METHOD FOR INCREASING EFFICIENCY OF GRADIENT DESCENT WHILE TRAINING MACHINE-LEARNING MODELS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LAASER,%20William%20T&rft.date=2021-12-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021383173A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |