SYSTEM AND METHOD FOR INCREASING EFFICIENCY OF GRADIENT DESCENT WHILE TRAINING MACHINE-LEARNING MODELS

Systems and methods of the present disclosure provide processes for determining how much to adjust machine-learning parameter values in a direction of a gradient for gradient-descent steps in training processes for machine-learning models. Current parameter values of a machine-learning model are vec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: LAASER, William T
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LAASER, William T
description Systems and methods of the present disclosure provide processes for determining how much to adjust machine-learning parameter values in a direction of a gradient for gradient-descent steps in training processes for machine-learning models. Current parameter values of a machine-learning model are vector components that define an initial estimate for a local extremum of a cost function used to measure how well the machine-learning model performs. The initial estimate and the gradient of the cost function for the initial estimate are used to define an auxiliary function. A root estimate is determined for the auxiliary function of the gradient. The parameters are adjusted in the direction of the gradient by an amount specified by the root estimate.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021383173A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021383173A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021383173A13</originalsourceid><addsrcrecordid>eNqNirEKwjAUALs4iPoPD5wLphl0fSQvzYM2gSRSOpUi6SRaqP-PFv0Ap-OO2xZT7GOiFtBpaClZr8H4AOxUIIzsaiBjWDE51YM3UAfUH0mgKaqVneWGIAVkt94tKsuOyoYwfIPX1MR9sZnG-5IPP-6Ko6GkbJnn55CXebzlR34N11idKiEvUpwlCvnf9QZsrzXJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR INCREASING EFFICIENCY OF GRADIENT DESCENT WHILE TRAINING MACHINE-LEARNING MODELS</title><source>esp@cenet</source><creator>LAASER, William T</creator><creatorcontrib>LAASER, William T</creatorcontrib><description>Systems and methods of the present disclosure provide processes for determining how much to adjust machine-learning parameter values in a direction of a gradient for gradient-descent steps in training processes for machine-learning models. Current parameter values of a machine-learning model are vector components that define an initial estimate for a local extremum of a cost function used to measure how well the machine-learning model performs. The initial estimate and the gradient of the cost function for the initial estimate are used to define an auxiliary function. A root estimate is determined for the auxiliary function of the gradient. The parameters are adjusted in the direction of the gradient by an amount specified by the root estimate.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211209&amp;DB=EPODOC&amp;CC=US&amp;NR=2021383173A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211209&amp;DB=EPODOC&amp;CC=US&amp;NR=2021383173A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LAASER, William T</creatorcontrib><title>SYSTEM AND METHOD FOR INCREASING EFFICIENCY OF GRADIENT DESCENT WHILE TRAINING MACHINE-LEARNING MODELS</title><description>Systems and methods of the present disclosure provide processes for determining how much to adjust machine-learning parameter values in a direction of a gradient for gradient-descent steps in training processes for machine-learning models. Current parameter values of a machine-learning model are vector components that define an initial estimate for a local extremum of a cost function used to measure how well the machine-learning model performs. The initial estimate and the gradient of the cost function for the initial estimate are used to define an auxiliary function. A root estimate is determined for the auxiliary function of the gradient. The parameters are adjusted in the direction of the gradient by an amount specified by the root estimate.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwjAUALs4iPoPD5wLphl0fSQvzYM2gSRSOpUi6SRaqP-PFv0Ap-OO2xZT7GOiFtBpaClZr8H4AOxUIIzsaiBjWDE51YM3UAfUH0mgKaqVneWGIAVkt94tKsuOyoYwfIPX1MR9sZnG-5IPP-6Ko6GkbJnn55CXebzlR34N11idKiEvUpwlCvnf9QZsrzXJ</recordid><startdate>20211209</startdate><enddate>20211209</enddate><creator>LAASER, William T</creator><scope>EVB</scope></search><sort><creationdate>20211209</creationdate><title>SYSTEM AND METHOD FOR INCREASING EFFICIENCY OF GRADIENT DESCENT WHILE TRAINING MACHINE-LEARNING MODELS</title><author>LAASER, William T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021383173A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LAASER, William T</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LAASER, William T</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR INCREASING EFFICIENCY OF GRADIENT DESCENT WHILE TRAINING MACHINE-LEARNING MODELS</title><date>2021-12-09</date><risdate>2021</risdate><abstract>Systems and methods of the present disclosure provide processes for determining how much to adjust machine-learning parameter values in a direction of a gradient for gradient-descent steps in training processes for machine-learning models. Current parameter values of a machine-learning model are vector components that define an initial estimate for a local extremum of a cost function used to measure how well the machine-learning model performs. The initial estimate and the gradient of the cost function for the initial estimate are used to define an auxiliary function. A root estimate is determined for the auxiliary function of the gradient. The parameters are adjusted in the direction of the gradient by an amount specified by the root estimate.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021383173A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title SYSTEM AND METHOD FOR INCREASING EFFICIENCY OF GRADIENT DESCENT WHILE TRAINING MACHINE-LEARNING MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LAASER,%20William%20T&rft.date=2021-12-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021383173A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true