IMAGE RECOGNITION DEVICE AND METHOD

In order to select an optimal learning model for an image when inference is carried out in the extraction of a profile line using machine learning, without requiring a correct value or degree of certainty, a feature extraction learning model group containing a plurality of learning models is used fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TOYODA, Yasutaka, SHINDO, Hiroyuki, YUMIBA, Ryou
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TOYODA, Yasutaka
SHINDO, Hiroyuki
YUMIBA, Ryou
description In order to select an optimal learning model for an image when inference is carried out in the extraction of a profile line using machine learning, without requiring a correct value or degree of certainty, a feature extraction learning model group containing a plurality of learning models is used for feature extraction. A recall learning model group containing recall learning models is paired with the feature extraction learning models. A feature amount extraction unit for referencing a feature extraction learning model and extracting a feature amount from input data; a data-to-data recall unit for referencing a recall learning model and outputting a recall result with the feature amount subjected to dimensional compression; and a learning model selection unit for selecting a feature extraction learning model from the feature extraction learning model group under the condition that the difference between the feature amount and the recall result is minimized are provided.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021374403A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021374403A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021374403A13</originalsourceid><addsrcrecordid>eNrjZFD29HV0d1UIcnX2d_fzDPH091NwcQ3zdHZVcPRzUfB1DfHwd-FhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRobG5iYmBsaOhsbEqQIAyQEjWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>IMAGE RECOGNITION DEVICE AND METHOD</title><source>esp@cenet</source><creator>TOYODA, Yasutaka ; SHINDO, Hiroyuki ; YUMIBA, Ryou</creator><creatorcontrib>TOYODA, Yasutaka ; SHINDO, Hiroyuki ; YUMIBA, Ryou</creatorcontrib><description>In order to select an optimal learning model for an image when inference is carried out in the extraction of a profile line using machine learning, without requiring a correct value or degree of certainty, a feature extraction learning model group containing a plurality of learning models is used for feature extraction. A recall learning model group containing recall learning models is paired with the feature extraction learning models. A feature amount extraction unit for referencing a feature extraction learning model and extracting a feature amount from input data; a data-to-data recall unit for referencing a recall learning model and outputting a recall result with the feature amount subjected to dimensional compression; and a learning model selection unit for selecting a feature extraction learning model from the feature extraction learning model group under the condition that the difference between the feature amount and the recall result is minimized are provided.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211202&amp;DB=EPODOC&amp;CC=US&amp;NR=2021374403A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211202&amp;DB=EPODOC&amp;CC=US&amp;NR=2021374403A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TOYODA, Yasutaka</creatorcontrib><creatorcontrib>SHINDO, Hiroyuki</creatorcontrib><creatorcontrib>YUMIBA, Ryou</creatorcontrib><title>IMAGE RECOGNITION DEVICE AND METHOD</title><description>In order to select an optimal learning model for an image when inference is carried out in the extraction of a profile line using machine learning, without requiring a correct value or degree of certainty, a feature extraction learning model group containing a plurality of learning models is used for feature extraction. A recall learning model group containing recall learning models is paired with the feature extraction learning models. A feature amount extraction unit for referencing a feature extraction learning model and extracting a feature amount from input data; a data-to-data recall unit for referencing a recall learning model and outputting a recall result with the feature amount subjected to dimensional compression; and a learning model selection unit for selecting a feature extraction learning model from the feature extraction learning model group under the condition that the difference between the feature amount and the recall result is minimized are provided.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD29HV0d1UIcnX2d_fzDPH091NwcQ3zdHZVcPRzUfB1DfHwd-FhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRobG5iYmBsaOhsbEqQIAyQEjWg</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>TOYODA, Yasutaka</creator><creator>SHINDO, Hiroyuki</creator><creator>YUMIBA, Ryou</creator><scope>EVB</scope></search><sort><creationdate>20211202</creationdate><title>IMAGE RECOGNITION DEVICE AND METHOD</title><author>TOYODA, Yasutaka ; SHINDO, Hiroyuki ; YUMIBA, Ryou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021374403A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TOYODA, Yasutaka</creatorcontrib><creatorcontrib>SHINDO, Hiroyuki</creatorcontrib><creatorcontrib>YUMIBA, Ryou</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TOYODA, Yasutaka</au><au>SHINDO, Hiroyuki</au><au>YUMIBA, Ryou</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>IMAGE RECOGNITION DEVICE AND METHOD</title><date>2021-12-02</date><risdate>2021</risdate><abstract>In order to select an optimal learning model for an image when inference is carried out in the extraction of a profile line using machine learning, without requiring a correct value or degree of certainty, a feature extraction learning model group containing a plurality of learning models is used for feature extraction. A recall learning model group containing recall learning models is paired with the feature extraction learning models. A feature amount extraction unit for referencing a feature extraction learning model and extracting a feature amount from input data; a data-to-data recall unit for referencing a recall learning model and outputting a recall result with the feature amount subjected to dimensional compression; and a learning model selection unit for selecting a feature extraction learning model from the feature extraction learning model group under the condition that the difference between the feature amount and the recall result is minimized are provided.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021374403A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title IMAGE RECOGNITION DEVICE AND METHOD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TOYODA,%20Yasutaka&rft.date=2021-12-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021374403A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true