UPDATING DATA MODELS TO MANAGE DATA DRIFTAND OUTLIERS

The present invention relates to a system and a method for updating data models. Input data received from a data source and/or prediction data obtained from a data model is reduced based on baseline reference data to obtain a plurality of representative points. The plurality of representative points...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MOPUR, Satish Kumar, BALACHANDRIAH, Sridhar, LADAPURAM SOUNDARAJAN, Suresh, PERUMAL VIJAYAN, Gunalan, SHASTRY, Krishna Prasad Lingadahalli
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MOPUR, Satish Kumar
BALACHANDRIAH, Sridhar
LADAPURAM SOUNDARAJAN, Suresh
PERUMAL VIJAYAN, Gunalan
SHASTRY, Krishna Prasad Lingadahalli
description The present invention relates to a system and a method for updating data models. Input data received from a data source and/or prediction data obtained from a data model is reduced based on baseline reference data to obtain a plurality of representative points. The plurality of representative points are clustered to generate a plurality of clusters. An outlier cluster is detected from the plurality of clusters based on a maximum distance of the plurality of clusters from a highest density cluster and/or comparison of quantity and values of the plurality of representative points with predefined rules. Data drift is identified based on changes in densities of the plurality of clusters. The data model is updated using information corresponding to the outlier cluster and the data drift.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021365478A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021365478A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021365478A13</originalsourceid><addsrcrecordid>eNrjZDANDXBxDPH0c1cAUo4Kvv4urj7BCiH-Cr6Ofo7urhBRlyBPtxBHPxcF_9AQH0_XoGAeBta0xJziVF4ozc2g7OYa4uyhm1qQH59aXJCYnJqXWhIfGmxkYGRobGZqYm7haGhMnCoAa0IoXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>UPDATING DATA MODELS TO MANAGE DATA DRIFTAND OUTLIERS</title><source>esp@cenet</source><creator>MOPUR, Satish Kumar ; BALACHANDRIAH, Sridhar ; LADAPURAM SOUNDARAJAN, Suresh ; PERUMAL VIJAYAN, Gunalan ; SHASTRY, Krishna Prasad Lingadahalli</creator><creatorcontrib>MOPUR, Satish Kumar ; BALACHANDRIAH, Sridhar ; LADAPURAM SOUNDARAJAN, Suresh ; PERUMAL VIJAYAN, Gunalan ; SHASTRY, Krishna Prasad Lingadahalli</creatorcontrib><description>The present invention relates to a system and a method for updating data models. Input data received from a data source and/or prediction data obtained from a data model is reduced based on baseline reference data to obtain a plurality of representative points. The plurality of representative points are clustered to generate a plurality of clusters. An outlier cluster is detected from the plurality of clusters based on a maximum distance of the plurality of clusters from a highest density cluster and/or comparison of quantity and values of the plurality of representative points with predefined rules. Data drift is identified based on changes in densities of the plurality of clusters. The data model is updated using information corresponding to the outlier cluster and the data drift.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211125&amp;DB=EPODOC&amp;CC=US&amp;NR=2021365478A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211125&amp;DB=EPODOC&amp;CC=US&amp;NR=2021365478A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MOPUR, Satish Kumar</creatorcontrib><creatorcontrib>BALACHANDRIAH, Sridhar</creatorcontrib><creatorcontrib>LADAPURAM SOUNDARAJAN, Suresh</creatorcontrib><creatorcontrib>PERUMAL VIJAYAN, Gunalan</creatorcontrib><creatorcontrib>SHASTRY, Krishna Prasad Lingadahalli</creatorcontrib><title>UPDATING DATA MODELS TO MANAGE DATA DRIFTAND OUTLIERS</title><description>The present invention relates to a system and a method for updating data models. Input data received from a data source and/or prediction data obtained from a data model is reduced based on baseline reference data to obtain a plurality of representative points. The plurality of representative points are clustered to generate a plurality of clusters. An outlier cluster is detected from the plurality of clusters based on a maximum distance of the plurality of clusters from a highest density cluster and/or comparison of quantity and values of the plurality of representative points with predefined rules. Data drift is identified based on changes in densities of the plurality of clusters. The data model is updated using information corresponding to the outlier cluster and the data drift.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDANDXBxDPH0c1cAUo4Kvv4urj7BCiH-Cr6Ofo7urhBRlyBPtxBHPxcF_9AQH0_XoGAeBta0xJziVF4ozc2g7OYa4uyhm1qQH59aXJCYnJqXWhIfGmxkYGRobGZqYm7haGhMnCoAa0IoXw</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>MOPUR, Satish Kumar</creator><creator>BALACHANDRIAH, Sridhar</creator><creator>LADAPURAM SOUNDARAJAN, Suresh</creator><creator>PERUMAL VIJAYAN, Gunalan</creator><creator>SHASTRY, Krishna Prasad Lingadahalli</creator><scope>EVB</scope></search><sort><creationdate>20211125</creationdate><title>UPDATING DATA MODELS TO MANAGE DATA DRIFTAND OUTLIERS</title><author>MOPUR, Satish Kumar ; BALACHANDRIAH, Sridhar ; LADAPURAM SOUNDARAJAN, Suresh ; PERUMAL VIJAYAN, Gunalan ; SHASTRY, Krishna Prasad Lingadahalli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021365478A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>MOPUR, Satish Kumar</creatorcontrib><creatorcontrib>BALACHANDRIAH, Sridhar</creatorcontrib><creatorcontrib>LADAPURAM SOUNDARAJAN, Suresh</creatorcontrib><creatorcontrib>PERUMAL VIJAYAN, Gunalan</creatorcontrib><creatorcontrib>SHASTRY, Krishna Prasad Lingadahalli</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MOPUR, Satish Kumar</au><au>BALACHANDRIAH, Sridhar</au><au>LADAPURAM SOUNDARAJAN, Suresh</au><au>PERUMAL VIJAYAN, Gunalan</au><au>SHASTRY, Krishna Prasad Lingadahalli</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>UPDATING DATA MODELS TO MANAGE DATA DRIFTAND OUTLIERS</title><date>2021-11-25</date><risdate>2021</risdate><abstract>The present invention relates to a system and a method for updating data models. Input data received from a data source and/or prediction data obtained from a data model is reduced based on baseline reference data to obtain a plurality of representative points. The plurality of representative points are clustered to generate a plurality of clusters. An outlier cluster is detected from the plurality of clusters based on a maximum distance of the plurality of clusters from a highest density cluster and/or comparison of quantity and values of the plurality of representative points with predefined rules. Data drift is identified based on changes in densities of the plurality of clusters. The data model is updated using information corresponding to the outlier cluster and the data drift.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021365478A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title UPDATING DATA MODELS TO MANAGE DATA DRIFTAND OUTLIERS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MOPUR,%20Satish%20Kumar&rft.date=2021-11-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021365478A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true