METHOD AND APPARATUS FOR REAL-TIME LEARNING-BASED AUGMENTED IRRADIATION CONTROL AND OPTIMIZATION
A machine-learning tool learns from sensors' data of a nuclear reactor at steady state and maps them to controls of the nuclear reactor. The tool learns all given ranges of normal operation and responses for corrective measures. The tool may train another learning tool (or the same tool) that f...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Gomez Fernandez, Mario Enrique Reese, Steven R Frieder, Ophir |
description | A machine-learning tool learns from sensors' data of a nuclear reactor at steady state and maps them to controls of the nuclear reactor. The tool learns all given ranges of normal operation and responses for corrective measures. The tool may train another learning tool (or the same tool) that forecasts the behavior of the reactor based on real-time changes (e.g., every 10 seconds). The tool implements an optimization technique for differing half-life materials to be placed in the reactor. The tool maximizes isotope production based on optimal controls of the reactor. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021358647A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021358647A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021358647A13</originalsourceid><addsrcrecordid>eNrjZEjwdQ3x8HdRcPQD4oAAxyDHkNBgBTf_IIUgV0cf3RBPX1cFH1fHID9PP3ddJ8dgV6CyUHdfV78QIMszKMjRxdMxxNPfT8HZ3y8kyN8HbJB_AFCfZxRYgoeBNS0xpziVF0pzMyi7uYY4e-imFuTHpxYXJCan5qWWxIcGGxkYGRqbWpiZmDsaGhOnCgBI6zR6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD AND APPARATUS FOR REAL-TIME LEARNING-BASED AUGMENTED IRRADIATION CONTROL AND OPTIMIZATION</title><source>esp@cenet</source><creator>Gomez Fernandez, Mario Enrique ; Reese, Steven R ; Frieder, Ophir</creator><creatorcontrib>Gomez Fernandez, Mario Enrique ; Reese, Steven R ; Frieder, Ophir</creatorcontrib><description>A machine-learning tool learns from sensors' data of a nuclear reactor at steady state and maps them to controls of the nuclear reactor. The tool learns all given ranges of normal operation and responses for corrective measures. The tool may train another learning tool (or the same tool) that forecasts the behavior of the reactor based on real-time changes (e.g., every 10 seconds). The tool implements an optimization technique for differing half-life materials to be placed in the reactor. The tool maximizes isotope production based on optimal controls of the reactor.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; NUCLEAR ENGINEERING ; NUCLEAR PHYSICS ; NUCLEAR REACTORS ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211118&DB=EPODOC&CC=US&NR=2021358647A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211118&DB=EPODOC&CC=US&NR=2021358647A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gomez Fernandez, Mario Enrique</creatorcontrib><creatorcontrib>Reese, Steven R</creatorcontrib><creatorcontrib>Frieder, Ophir</creatorcontrib><title>METHOD AND APPARATUS FOR REAL-TIME LEARNING-BASED AUGMENTED IRRADIATION CONTROL AND OPTIMIZATION</title><description>A machine-learning tool learns from sensors' data of a nuclear reactor at steady state and maps them to controls of the nuclear reactor. The tool learns all given ranges of normal operation and responses for corrective measures. The tool may train another learning tool (or the same tool) that forecasts the behavior of the reactor based on real-time changes (e.g., every 10 seconds). The tool implements an optimization technique for differing half-life materials to be placed in the reactor. The tool maximizes isotope production based on optimal controls of the reactor.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>NUCLEAR ENGINEERING</subject><subject>NUCLEAR PHYSICS</subject><subject>NUCLEAR REACTORS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZEjwdQ3x8HdRcPQD4oAAxyDHkNBgBTf_IIUgV0cf3RBPX1cFH1fHID9PP3ddJ8dgV6CyUHdfV78QIMszKMjRxdMxxNPfT8HZ3y8kyN8HbJB_AFCfZxRYgoeBNS0xpziVF0pzMyi7uYY4e-imFuTHpxYXJCan5qWWxIcGGxkYGRqbWpiZmDsaGhOnCgBI6zR6</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Gomez Fernandez, Mario Enrique</creator><creator>Reese, Steven R</creator><creator>Frieder, Ophir</creator><scope>EVB</scope></search><sort><creationdate>20211118</creationdate><title>METHOD AND APPARATUS FOR REAL-TIME LEARNING-BASED AUGMENTED IRRADIATION CONTROL AND OPTIMIZATION</title><author>Gomez Fernandez, Mario Enrique ; Reese, Steven R ; Frieder, Ophir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021358647A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>NUCLEAR ENGINEERING</topic><topic>NUCLEAR PHYSICS</topic><topic>NUCLEAR REACTORS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomez Fernandez, Mario Enrique</creatorcontrib><creatorcontrib>Reese, Steven R</creatorcontrib><creatorcontrib>Frieder, Ophir</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gomez Fernandez, Mario Enrique</au><au>Reese, Steven R</au><au>Frieder, Ophir</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD AND APPARATUS FOR REAL-TIME LEARNING-BASED AUGMENTED IRRADIATION CONTROL AND OPTIMIZATION</title><date>2021-11-18</date><risdate>2021</risdate><abstract>A machine-learning tool learns from sensors' data of a nuclear reactor at steady state and maps them to controls of the nuclear reactor. The tool learns all given ranges of normal operation and responses for corrective measures. The tool may train another learning tool (or the same tool) that forecasts the behavior of the reactor based on real-time changes (e.g., every 10 seconds). The tool implements an optimization technique for differing half-life materials to be placed in the reactor. The tool maximizes isotope production based on optimal controls of the reactor.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021358647A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING NUCLEAR ENGINEERING NUCLEAR PHYSICS NUCLEAR REACTORS PHYSICS |
title | METHOD AND APPARATUS FOR REAL-TIME LEARNING-BASED AUGMENTED IRRADIATION CONTROL AND OPTIMIZATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T04%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gomez%20Fernandez,%20Mario%20Enrique&rft.date=2021-11-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021358647A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |