METHOD AND APPARATUS FOR REAL-TIME LEARNING-BASED AUGMENTED IRRADIATION CONTROL AND OPTIMIZATION

A machine-learning tool learns from sensors' data of a nuclear reactor at steady state and maps them to controls of the nuclear reactor. The tool learns all given ranges of normal operation and responses for corrective measures. The tool may train another learning tool (or the same tool) that f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gomez Fernandez, Mario Enrique, Reese, Steven R, Frieder, Ophir
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Gomez Fernandez, Mario Enrique
Reese, Steven R
Frieder, Ophir
description A machine-learning tool learns from sensors' data of a nuclear reactor at steady state and maps them to controls of the nuclear reactor. The tool learns all given ranges of normal operation and responses for corrective measures. The tool may train another learning tool (or the same tool) that forecasts the behavior of the reactor based on real-time changes (e.g., every 10 seconds). The tool implements an optimization technique for differing half-life materials to be placed in the reactor. The tool maximizes isotope production based on optimal controls of the reactor.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021358647A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021358647A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021358647A13</originalsourceid><addsrcrecordid>eNrjZEjwdQ3x8HdRcPQD4oAAxyDHkNBgBTf_IIUgV0cf3RBPX1cFH1fHID9PP3ddJ8dgV6CyUHdfV78QIMszKMjRxdMxxNPfT8HZ3y8kyN8HbJB_AFCfZxRYgoeBNS0xpziVF0pzMyi7uYY4e-imFuTHpxYXJCan5qWWxIcGGxkYGRqbWpiZmDsaGhOnCgBI6zR6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD AND APPARATUS FOR REAL-TIME LEARNING-BASED AUGMENTED IRRADIATION CONTROL AND OPTIMIZATION</title><source>esp@cenet</source><creator>Gomez Fernandez, Mario Enrique ; Reese, Steven R ; Frieder, Ophir</creator><creatorcontrib>Gomez Fernandez, Mario Enrique ; Reese, Steven R ; Frieder, Ophir</creatorcontrib><description>A machine-learning tool learns from sensors' data of a nuclear reactor at steady state and maps them to controls of the nuclear reactor. The tool learns all given ranges of normal operation and responses for corrective measures. The tool may train another learning tool (or the same tool) that forecasts the behavior of the reactor based on real-time changes (e.g., every 10 seconds). The tool implements an optimization technique for differing half-life materials to be placed in the reactor. The tool maximizes isotope production based on optimal controls of the reactor.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; NUCLEAR ENGINEERING ; NUCLEAR PHYSICS ; NUCLEAR REACTORS ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211118&amp;DB=EPODOC&amp;CC=US&amp;NR=2021358647A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211118&amp;DB=EPODOC&amp;CC=US&amp;NR=2021358647A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gomez Fernandez, Mario Enrique</creatorcontrib><creatorcontrib>Reese, Steven R</creatorcontrib><creatorcontrib>Frieder, Ophir</creatorcontrib><title>METHOD AND APPARATUS FOR REAL-TIME LEARNING-BASED AUGMENTED IRRADIATION CONTROL AND OPTIMIZATION</title><description>A machine-learning tool learns from sensors' data of a nuclear reactor at steady state and maps them to controls of the nuclear reactor. The tool learns all given ranges of normal operation and responses for corrective measures. The tool may train another learning tool (or the same tool) that forecasts the behavior of the reactor based on real-time changes (e.g., every 10 seconds). The tool implements an optimization technique for differing half-life materials to be placed in the reactor. The tool maximizes isotope production based on optimal controls of the reactor.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>NUCLEAR ENGINEERING</subject><subject>NUCLEAR PHYSICS</subject><subject>NUCLEAR REACTORS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZEjwdQ3x8HdRcPQD4oAAxyDHkNBgBTf_IIUgV0cf3RBPX1cFH1fHID9PP3ddJ8dgV6CyUHdfV78QIMszKMjRxdMxxNPfT8HZ3y8kyN8HbJB_AFCfZxRYgoeBNS0xpziVF0pzMyi7uYY4e-imFuTHpxYXJCan5qWWxIcGGxkYGRqbWpiZmDsaGhOnCgBI6zR6</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Gomez Fernandez, Mario Enrique</creator><creator>Reese, Steven R</creator><creator>Frieder, Ophir</creator><scope>EVB</scope></search><sort><creationdate>20211118</creationdate><title>METHOD AND APPARATUS FOR REAL-TIME LEARNING-BASED AUGMENTED IRRADIATION CONTROL AND OPTIMIZATION</title><author>Gomez Fernandez, Mario Enrique ; Reese, Steven R ; Frieder, Ophir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021358647A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>NUCLEAR ENGINEERING</topic><topic>NUCLEAR PHYSICS</topic><topic>NUCLEAR REACTORS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomez Fernandez, Mario Enrique</creatorcontrib><creatorcontrib>Reese, Steven R</creatorcontrib><creatorcontrib>Frieder, Ophir</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gomez Fernandez, Mario Enrique</au><au>Reese, Steven R</au><au>Frieder, Ophir</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD AND APPARATUS FOR REAL-TIME LEARNING-BASED AUGMENTED IRRADIATION CONTROL AND OPTIMIZATION</title><date>2021-11-18</date><risdate>2021</risdate><abstract>A machine-learning tool learns from sensors' data of a nuclear reactor at steady state and maps them to controls of the nuclear reactor. The tool learns all given ranges of normal operation and responses for corrective measures. The tool may train another learning tool (or the same tool) that forecasts the behavior of the reactor based on real-time changes (e.g., every 10 seconds). The tool implements an optimization technique for differing half-life materials to be placed in the reactor. The tool maximizes isotope production based on optimal controls of the reactor.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021358647A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
NUCLEAR ENGINEERING
NUCLEAR PHYSICS
NUCLEAR REACTORS
PHYSICS
title METHOD AND APPARATUS FOR REAL-TIME LEARNING-BASED AUGMENTED IRRADIATION CONTROL AND OPTIMIZATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T04%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gomez%20Fernandez,%20Mario%20Enrique&rft.date=2021-11-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021358647A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true