AVOIDING DATA ROUTING CONFLICTS IN A MACHINE LEARNING ACCELERATOR

A compiler receives a description of a machine learning network (MLN) and generates a computer program that implements the MLN on a machine learning accelerator (MLA). To implement the MLN, the compiler generates compute instructions that implement computations of the MLN on different processing uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shah, Nishit, Kotler, Reed
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Shah, Nishit
Kotler, Reed
description A compiler receives a description of a machine learning network (MLN) and generates a computer program that implements the MLN on a machine learning accelerator (MLA). To implement the MLN, the compiler generates compute instructions that implement computations of the MLN on different processing units (Tiles), and data transfer instructions that transfer data used in the computations. The compiler may statically schedule at least a portion of the instructions for execution by the Tiles according to fixed timing. The compiler may initially implement data transfers between non-adjacent Tiles (or external memories) by implementing a sequence of transfers through one or more intermediate Tiles (or external memories) in accordance with a set of default routing rules that dictates the data path. The computer program may then be simulated to identify routing conflicts. When routing conflicts are detected, the compiler updates the computer program in a manner that avoids the conflicts.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021326681A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021326681A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021326681A13</originalsourceid><addsrcrecordid>eNrjZHB0DPP3dPH0c1dwcQxxVAjyDw0BcZz9_dx8PJ1DghU8_RQcFXwdnT08_VwVfFwdg_xA8o7Ozq4-rkGOIf5BPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDI0NjIzMzC0NHQmDhVAF5oK5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AVOIDING DATA ROUTING CONFLICTS IN A MACHINE LEARNING ACCELERATOR</title><source>esp@cenet</source><creator>Shah, Nishit ; Kotler, Reed</creator><creatorcontrib>Shah, Nishit ; Kotler, Reed</creatorcontrib><description>A compiler receives a description of a machine learning network (MLN) and generates a computer program that implements the MLN on a machine learning accelerator (MLA). To implement the MLN, the compiler generates compute instructions that implement computations of the MLN on different processing units (Tiles), and data transfer instructions that transfer data used in the computations. The compiler may statically schedule at least a portion of the instructions for execution by the Tiles according to fixed timing. The compiler may initially implement data transfers between non-adjacent Tiles (or external memories) by implementing a sequence of transfers through one or more intermediate Tiles (or external memories) in accordance with a set of default routing rules that dictates the data path. The computer program may then be simulated to identify routing conflicts. When routing conflicts are detected, the compiler updates the computer program in a manner that avoids the conflicts.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211021&amp;DB=EPODOC&amp;CC=US&amp;NR=2021326681A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211021&amp;DB=EPODOC&amp;CC=US&amp;NR=2021326681A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Shah, Nishit</creatorcontrib><creatorcontrib>Kotler, Reed</creatorcontrib><title>AVOIDING DATA ROUTING CONFLICTS IN A MACHINE LEARNING ACCELERATOR</title><description>A compiler receives a description of a machine learning network (MLN) and generates a computer program that implements the MLN on a machine learning accelerator (MLA). To implement the MLN, the compiler generates compute instructions that implement computations of the MLN on different processing units (Tiles), and data transfer instructions that transfer data used in the computations. The compiler may statically schedule at least a portion of the instructions for execution by the Tiles according to fixed timing. The compiler may initially implement data transfers between non-adjacent Tiles (or external memories) by implementing a sequence of transfers through one or more intermediate Tiles (or external memories) in accordance with a set of default routing rules that dictates the data path. The computer program may then be simulated to identify routing conflicts. When routing conflicts are detected, the compiler updates the computer program in a manner that avoids the conflicts.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB0DPP3dPH0c1dwcQxxVAjyDw0BcZz9_dx8PJ1DghU8_RQcFXwdnT08_VwVfFwdg_xA8o7Ozq4-rkGOIf5BPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDI0NjIzMzC0NHQmDhVAF5oK5Q</recordid><startdate>20211021</startdate><enddate>20211021</enddate><creator>Shah, Nishit</creator><creator>Kotler, Reed</creator><scope>EVB</scope></search><sort><creationdate>20211021</creationdate><title>AVOIDING DATA ROUTING CONFLICTS IN A MACHINE LEARNING ACCELERATOR</title><author>Shah, Nishit ; Kotler, Reed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021326681A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Shah, Nishit</creatorcontrib><creatorcontrib>Kotler, Reed</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shah, Nishit</au><au>Kotler, Reed</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AVOIDING DATA ROUTING CONFLICTS IN A MACHINE LEARNING ACCELERATOR</title><date>2021-10-21</date><risdate>2021</risdate><abstract>A compiler receives a description of a machine learning network (MLN) and generates a computer program that implements the MLN on a machine learning accelerator (MLA). To implement the MLN, the compiler generates compute instructions that implement computations of the MLN on different processing units (Tiles), and data transfer instructions that transfer data used in the computations. The compiler may statically schedule at least a portion of the instructions for execution by the Tiles according to fixed timing. The compiler may initially implement data transfers between non-adjacent Tiles (or external memories) by implementing a sequence of transfers through one or more intermediate Tiles (or external memories) in accordance with a set of default routing rules that dictates the data path. The computer program may then be simulated to identify routing conflicts. When routing conflicts are detected, the compiler updates the computer program in a manner that avoids the conflicts.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021326681A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title AVOIDING DATA ROUTING CONFLICTS IN A MACHINE LEARNING ACCELERATOR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A47%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Shah,%20Nishit&rft.date=2021-10-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021326681A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true