EXPERT-IN-THE-LOOP AI FOR MATERIALS GENERATION
Candidate material for polymerization can be received. One or more desired features in the candidate material can be identified. A machine learning model can be trained to generate a new material having one or more of the desired features. Permissively, the candidate material can be determined from...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Narayan, Chandrasekhar Gruhl, Daniel Kato, Linda Ha Gentile, Anna Lisa Zubarev, Dmitry Park, Nathaniel H Hedrick, James L Alba, Alfredo DeLuca, Chad Eric Welch, Steven R Ristoski, Petar Sanders, Daniel Paul |
description | Candidate material for polymerization can be received. One or more desired features in the candidate material can be identified. A machine learning model can be trained to generate a new material having one or more of the desired features. Permissively, the candidate material can be determined from running a machine learning classification model that ranks a plurality of material as candidates. Permissively, the generated new material can be input to the machine learning classification model, for the machine learning classification model to include in ranking the plurality of material as candidates. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021304852A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021304852A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021304852A13</originalsourceid><addsrcrecordid>eNrjZNBzjQhwDQrR9fTTDfFw1fXx9w9QcPRUcPMPUvB1DHEN8nT0CVZwd_VzDXIM8fT342FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhsYGJhamRo6GxsSpAgBvNCaP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>EXPERT-IN-THE-LOOP AI FOR MATERIALS GENERATION</title><source>esp@cenet</source><creator>Narayan, Chandrasekhar ; Gruhl, Daniel ; Kato, Linda Ha ; Gentile, Anna Lisa ; Zubarev, Dmitry ; Park, Nathaniel H ; Hedrick, James L ; Alba, Alfredo ; DeLuca, Chad Eric ; Welch, Steven R ; Ristoski, Petar ; Sanders, Daniel Paul</creator><creatorcontrib>Narayan, Chandrasekhar ; Gruhl, Daniel ; Kato, Linda Ha ; Gentile, Anna Lisa ; Zubarev, Dmitry ; Park, Nathaniel H ; Hedrick, James L ; Alba, Alfredo ; DeLuca, Chad Eric ; Welch, Steven R ; Ristoski, Petar ; Sanders, Daniel Paul</creatorcontrib><description>Candidate material for polymerization can be received. One or more desired features in the candidate material can be identified. A machine learning model can be trained to generate a new material having one or more of the desired features. Permissively, the candidate material can be determined from running a machine learning classification model that ranks a plurality of material as candidates. Permissively, the generated new material can be input to the machine learning classification model, for the machine learning classification model to include in ranking the plurality of material as candidates.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210930&DB=EPODOC&CC=US&NR=2021304852A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210930&DB=EPODOC&CC=US&NR=2021304852A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Narayan, Chandrasekhar</creatorcontrib><creatorcontrib>Gruhl, Daniel</creatorcontrib><creatorcontrib>Kato, Linda Ha</creatorcontrib><creatorcontrib>Gentile, Anna Lisa</creatorcontrib><creatorcontrib>Zubarev, Dmitry</creatorcontrib><creatorcontrib>Park, Nathaniel H</creatorcontrib><creatorcontrib>Hedrick, James L</creatorcontrib><creatorcontrib>Alba, Alfredo</creatorcontrib><creatorcontrib>DeLuca, Chad Eric</creatorcontrib><creatorcontrib>Welch, Steven R</creatorcontrib><creatorcontrib>Ristoski, Petar</creatorcontrib><creatorcontrib>Sanders, Daniel Paul</creatorcontrib><title>EXPERT-IN-THE-LOOP AI FOR MATERIALS GENERATION</title><description>Candidate material for polymerization can be received. One or more desired features in the candidate material can be identified. A machine learning model can be trained to generate a new material having one or more of the desired features. Permissively, the candidate material can be determined from running a machine learning classification model that ranks a plurality of material as candidates. Permissively, the generated new material can be input to the machine learning classification model, for the machine learning classification model to include in ranking the plurality of material as candidates.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBzjQhwDQrR9fTTDfFw1fXx9w9QcPRUcPMPUvB1DHEN8nT0CVZwd_VzDXIM8fT342FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhsYGJhamRo6GxsSpAgBvNCaP</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Narayan, Chandrasekhar</creator><creator>Gruhl, Daniel</creator><creator>Kato, Linda Ha</creator><creator>Gentile, Anna Lisa</creator><creator>Zubarev, Dmitry</creator><creator>Park, Nathaniel H</creator><creator>Hedrick, James L</creator><creator>Alba, Alfredo</creator><creator>DeLuca, Chad Eric</creator><creator>Welch, Steven R</creator><creator>Ristoski, Petar</creator><creator>Sanders, Daniel Paul</creator><scope>EVB</scope></search><sort><creationdate>20210930</creationdate><title>EXPERT-IN-THE-LOOP AI FOR MATERIALS GENERATION</title><author>Narayan, Chandrasekhar ; Gruhl, Daniel ; Kato, Linda Ha ; Gentile, Anna Lisa ; Zubarev, Dmitry ; Park, Nathaniel H ; Hedrick, James L ; Alba, Alfredo ; DeLuca, Chad Eric ; Welch, Steven R ; Ristoski, Petar ; Sanders, Daniel Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021304852A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Narayan, Chandrasekhar</creatorcontrib><creatorcontrib>Gruhl, Daniel</creatorcontrib><creatorcontrib>Kato, Linda Ha</creatorcontrib><creatorcontrib>Gentile, Anna Lisa</creatorcontrib><creatorcontrib>Zubarev, Dmitry</creatorcontrib><creatorcontrib>Park, Nathaniel H</creatorcontrib><creatorcontrib>Hedrick, James L</creatorcontrib><creatorcontrib>Alba, Alfredo</creatorcontrib><creatorcontrib>DeLuca, Chad Eric</creatorcontrib><creatorcontrib>Welch, Steven R</creatorcontrib><creatorcontrib>Ristoski, Petar</creatorcontrib><creatorcontrib>Sanders, Daniel Paul</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Narayan, Chandrasekhar</au><au>Gruhl, Daniel</au><au>Kato, Linda Ha</au><au>Gentile, Anna Lisa</au><au>Zubarev, Dmitry</au><au>Park, Nathaniel H</au><au>Hedrick, James L</au><au>Alba, Alfredo</au><au>DeLuca, Chad Eric</au><au>Welch, Steven R</au><au>Ristoski, Petar</au><au>Sanders, Daniel Paul</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>EXPERT-IN-THE-LOOP AI FOR MATERIALS GENERATION</title><date>2021-09-30</date><risdate>2021</risdate><abstract>Candidate material for polymerization can be received. One or more desired features in the candidate material can be identified. A machine learning model can be trained to generate a new material having one or more of the desired features. Permissively, the candidate material can be determined from running a machine learning classification model that ranks a plurality of material as candidates. Permissively, the generated new material can be input to the machine learning classification model, for the machine learning classification model to include in ranking the plurality of material as candidates.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021304852A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
title | EXPERT-IN-THE-LOOP AI FOR MATERIALS GENERATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Narayan,%20Chandrasekhar&rft.date=2021-09-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021304852A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |