EXPERT-IN-THE-LOOP AI FOR MATERIALS GENERATION

Candidate material for polymerization can be received. One or more desired features in the candidate material can be identified. A machine learning model can be trained to generate a new material having one or more of the desired features. Permissively, the candidate material can be determined from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Narayan, Chandrasekhar, Gruhl, Daniel, Kato, Linda Ha, Gentile, Anna Lisa, Zubarev, Dmitry, Park, Nathaniel H, Hedrick, James L, Alba, Alfredo, DeLuca, Chad Eric, Welch, Steven R, Ristoski, Petar, Sanders, Daniel Paul
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Narayan, Chandrasekhar
Gruhl, Daniel
Kato, Linda Ha
Gentile, Anna Lisa
Zubarev, Dmitry
Park, Nathaniel H
Hedrick, James L
Alba, Alfredo
DeLuca, Chad Eric
Welch, Steven R
Ristoski, Petar
Sanders, Daniel Paul
description Candidate material for polymerization can be received. One or more desired features in the candidate material can be identified. A machine learning model can be trained to generate a new material having one or more of the desired features. Permissively, the candidate material can be determined from running a machine learning classification model that ranks a plurality of material as candidates. Permissively, the generated new material can be input to the machine learning classification model, for the machine learning classification model to include in ranking the plurality of material as candidates.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021304852A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021304852A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021304852A13</originalsourceid><addsrcrecordid>eNrjZNBzjQhwDQrR9fTTDfFw1fXx9w9QcPRUcPMPUvB1DHEN8nT0CVZwd_VzDXIM8fT342FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhsYGJhamRo6GxsSpAgBvNCaP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>EXPERT-IN-THE-LOOP AI FOR MATERIALS GENERATION</title><source>esp@cenet</source><creator>Narayan, Chandrasekhar ; Gruhl, Daniel ; Kato, Linda Ha ; Gentile, Anna Lisa ; Zubarev, Dmitry ; Park, Nathaniel H ; Hedrick, James L ; Alba, Alfredo ; DeLuca, Chad Eric ; Welch, Steven R ; Ristoski, Petar ; Sanders, Daniel Paul</creator><creatorcontrib>Narayan, Chandrasekhar ; Gruhl, Daniel ; Kato, Linda Ha ; Gentile, Anna Lisa ; Zubarev, Dmitry ; Park, Nathaniel H ; Hedrick, James L ; Alba, Alfredo ; DeLuca, Chad Eric ; Welch, Steven R ; Ristoski, Petar ; Sanders, Daniel Paul</creatorcontrib><description>Candidate material for polymerization can be received. One or more desired features in the candidate material can be identified. A machine learning model can be trained to generate a new material having one or more of the desired features. Permissively, the candidate material can be determined from running a machine learning classification model that ranks a plurality of material as candidates. Permissively, the generated new material can be input to the machine learning classification model, for the machine learning classification model to include in ranking the plurality of material as candidates.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210930&amp;DB=EPODOC&amp;CC=US&amp;NR=2021304852A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210930&amp;DB=EPODOC&amp;CC=US&amp;NR=2021304852A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Narayan, Chandrasekhar</creatorcontrib><creatorcontrib>Gruhl, Daniel</creatorcontrib><creatorcontrib>Kato, Linda Ha</creatorcontrib><creatorcontrib>Gentile, Anna Lisa</creatorcontrib><creatorcontrib>Zubarev, Dmitry</creatorcontrib><creatorcontrib>Park, Nathaniel H</creatorcontrib><creatorcontrib>Hedrick, James L</creatorcontrib><creatorcontrib>Alba, Alfredo</creatorcontrib><creatorcontrib>DeLuca, Chad Eric</creatorcontrib><creatorcontrib>Welch, Steven R</creatorcontrib><creatorcontrib>Ristoski, Petar</creatorcontrib><creatorcontrib>Sanders, Daniel Paul</creatorcontrib><title>EXPERT-IN-THE-LOOP AI FOR MATERIALS GENERATION</title><description>Candidate material for polymerization can be received. One or more desired features in the candidate material can be identified. A machine learning model can be trained to generate a new material having one or more of the desired features. Permissively, the candidate material can be determined from running a machine learning classification model that ranks a plurality of material as candidates. Permissively, the generated new material can be input to the machine learning classification model, for the machine learning classification model to include in ranking the plurality of material as candidates.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBzjQhwDQrR9fTTDfFw1fXx9w9QcPRUcPMPUvB1DHEN8nT0CVZwd_VzDXIM8fT342FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhsYGJhamRo6GxsSpAgBvNCaP</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Narayan, Chandrasekhar</creator><creator>Gruhl, Daniel</creator><creator>Kato, Linda Ha</creator><creator>Gentile, Anna Lisa</creator><creator>Zubarev, Dmitry</creator><creator>Park, Nathaniel H</creator><creator>Hedrick, James L</creator><creator>Alba, Alfredo</creator><creator>DeLuca, Chad Eric</creator><creator>Welch, Steven R</creator><creator>Ristoski, Petar</creator><creator>Sanders, Daniel Paul</creator><scope>EVB</scope></search><sort><creationdate>20210930</creationdate><title>EXPERT-IN-THE-LOOP AI FOR MATERIALS GENERATION</title><author>Narayan, Chandrasekhar ; Gruhl, Daniel ; Kato, Linda Ha ; Gentile, Anna Lisa ; Zubarev, Dmitry ; Park, Nathaniel H ; Hedrick, James L ; Alba, Alfredo ; DeLuca, Chad Eric ; Welch, Steven R ; Ristoski, Petar ; Sanders, Daniel Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021304852A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Narayan, Chandrasekhar</creatorcontrib><creatorcontrib>Gruhl, Daniel</creatorcontrib><creatorcontrib>Kato, Linda Ha</creatorcontrib><creatorcontrib>Gentile, Anna Lisa</creatorcontrib><creatorcontrib>Zubarev, Dmitry</creatorcontrib><creatorcontrib>Park, Nathaniel H</creatorcontrib><creatorcontrib>Hedrick, James L</creatorcontrib><creatorcontrib>Alba, Alfredo</creatorcontrib><creatorcontrib>DeLuca, Chad Eric</creatorcontrib><creatorcontrib>Welch, Steven R</creatorcontrib><creatorcontrib>Ristoski, Petar</creatorcontrib><creatorcontrib>Sanders, Daniel Paul</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Narayan, Chandrasekhar</au><au>Gruhl, Daniel</au><au>Kato, Linda Ha</au><au>Gentile, Anna Lisa</au><au>Zubarev, Dmitry</au><au>Park, Nathaniel H</au><au>Hedrick, James L</au><au>Alba, Alfredo</au><au>DeLuca, Chad Eric</au><au>Welch, Steven R</au><au>Ristoski, Petar</au><au>Sanders, Daniel Paul</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>EXPERT-IN-THE-LOOP AI FOR MATERIALS GENERATION</title><date>2021-09-30</date><risdate>2021</risdate><abstract>Candidate material for polymerization can be received. One or more desired features in the candidate material can be identified. A machine learning model can be trained to generate a new material having one or more of the desired features. Permissively, the candidate material can be determined from running a machine learning classification model that ranks a plurality of material as candidates. Permissively, the generated new material can be input to the machine learning classification model, for the machine learning classification model to include in ranking the plurality of material as candidates.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021304852A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title EXPERT-IN-THE-LOOP AI FOR MATERIALS GENERATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Narayan,%20Chandrasekhar&rft.date=2021-09-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021304852A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true