ANNOTATION OF DIGITAL IMAGES FOR MACHINE LEARNING

Computer-implemented methods and apparatus are provided for annotating digital images of line plots with ground truth labels. For each digital image, such a method includes supplying image data defining the image of a line plot to a machine-learning model trained to generate a set of control points...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rufli, Martin, Kaestner, Ralf, Staar, Peter Willem Jan, Vincent, Elliot Jacques, Dolfi, Michele, Auer, Christoph, Velizhev, Alexander
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Rufli, Martin
Kaestner, Ralf
Staar, Peter Willem Jan
Vincent, Elliot Jacques
Dolfi, Michele
Auer, Christoph
Velizhev, Alexander
description Computer-implemented methods and apparatus are provided for annotating digital images of line plots with ground truth labels. For each digital image, such a method includes supplying image data defining the image of a line plot to a machine-learning model trained to generate a set of control points defining a spline corresponding to the line plot. The method further comprises displaying the spline, and the set of control points, superimposed on the image in a graphical user interface and, in response to user manipulation via the graphical user interface of one or more control points, dynamically adjusting the displayed spline in accordance with manipulated control points whereby the displayed spline can be adjusted for conformity with the line plot. The set of control points for the adjusted spline is then stored as a ground truth label for the image.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021304463A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021304463A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021304463A13</originalsourceid><addsrcrecordid>eNrjZDB09PPzD3EM8fT3U_B3U3DxdPcMcfRR8PR1dHcNVnDzD1LwdXT28PRzVfBxdQzy8_Rz52FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhsYGJiZmxo6GxsSpAgDQOycu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ANNOTATION OF DIGITAL IMAGES FOR MACHINE LEARNING</title><source>esp@cenet</source><creator>Rufli, Martin ; Kaestner, Ralf ; Staar, Peter Willem Jan ; Vincent, Elliot Jacques ; Dolfi, Michele ; Auer, Christoph ; Velizhev, Alexander</creator><creatorcontrib>Rufli, Martin ; Kaestner, Ralf ; Staar, Peter Willem Jan ; Vincent, Elliot Jacques ; Dolfi, Michele ; Auer, Christoph ; Velizhev, Alexander</creatorcontrib><description>Computer-implemented methods and apparatus are provided for annotating digital images of line plots with ground truth labels. For each digital image, such a method includes supplying image data defining the image of a line plot to a machine-learning model trained to generate a set of control points defining a spline corresponding to the line plot. The method further comprises displaying the spline, and the set of control points, superimposed on the image in a graphical user interface and, in response to user manipulation via the graphical user interface of one or more control points, dynamically adjusting the displayed spline in accordance with manipulated control points whereby the displayed spline can be adjusted for conformity with the line plot. The set of control points for the adjusted spline is then stored as a ground truth label for the image.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210930&amp;DB=EPODOC&amp;CC=US&amp;NR=2021304463A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210930&amp;DB=EPODOC&amp;CC=US&amp;NR=2021304463A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rufli, Martin</creatorcontrib><creatorcontrib>Kaestner, Ralf</creatorcontrib><creatorcontrib>Staar, Peter Willem Jan</creatorcontrib><creatorcontrib>Vincent, Elliot Jacques</creatorcontrib><creatorcontrib>Dolfi, Michele</creatorcontrib><creatorcontrib>Auer, Christoph</creatorcontrib><creatorcontrib>Velizhev, Alexander</creatorcontrib><title>ANNOTATION OF DIGITAL IMAGES FOR MACHINE LEARNING</title><description>Computer-implemented methods and apparatus are provided for annotating digital images of line plots with ground truth labels. For each digital image, such a method includes supplying image data defining the image of a line plot to a machine-learning model trained to generate a set of control points defining a spline corresponding to the line plot. The method further comprises displaying the spline, and the set of control points, superimposed on the image in a graphical user interface and, in response to user manipulation via the graphical user interface of one or more control points, dynamically adjusting the displayed spline in accordance with manipulated control points whereby the displayed spline can be adjusted for conformity with the line plot. The set of control points for the adjusted spline is then stored as a ground truth label for the image.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB09PPzD3EM8fT3U_B3U3DxdPcMcfRR8PR1dHcNVnDzD1LwdXT28PRzVfBxdQzy8_Rz52FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhsYGJiZmxo6GxsSpAgDQOycu</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Rufli, Martin</creator><creator>Kaestner, Ralf</creator><creator>Staar, Peter Willem Jan</creator><creator>Vincent, Elliot Jacques</creator><creator>Dolfi, Michele</creator><creator>Auer, Christoph</creator><creator>Velizhev, Alexander</creator><scope>EVB</scope></search><sort><creationdate>20210930</creationdate><title>ANNOTATION OF DIGITAL IMAGES FOR MACHINE LEARNING</title><author>Rufli, Martin ; Kaestner, Ralf ; Staar, Peter Willem Jan ; Vincent, Elliot Jacques ; Dolfi, Michele ; Auer, Christoph ; Velizhev, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021304463A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Rufli, Martin</creatorcontrib><creatorcontrib>Kaestner, Ralf</creatorcontrib><creatorcontrib>Staar, Peter Willem Jan</creatorcontrib><creatorcontrib>Vincent, Elliot Jacques</creatorcontrib><creatorcontrib>Dolfi, Michele</creatorcontrib><creatorcontrib>Auer, Christoph</creatorcontrib><creatorcontrib>Velizhev, Alexander</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rufli, Martin</au><au>Kaestner, Ralf</au><au>Staar, Peter Willem Jan</au><au>Vincent, Elliot Jacques</au><au>Dolfi, Michele</au><au>Auer, Christoph</au><au>Velizhev, Alexander</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ANNOTATION OF DIGITAL IMAGES FOR MACHINE LEARNING</title><date>2021-09-30</date><risdate>2021</risdate><abstract>Computer-implemented methods and apparatus are provided for annotating digital images of line plots with ground truth labels. For each digital image, such a method includes supplying image data defining the image of a line plot to a machine-learning model trained to generate a set of control points defining a spline corresponding to the line plot. The method further comprises displaying the spline, and the set of control points, superimposed on the image in a graphical user interface and, in response to user manipulation via the graphical user interface of one or more control points, dynamically adjusting the displayed spline in accordance with manipulated control points whereby the displayed spline can be adjusted for conformity with the line plot. The set of control points for the adjusted spline is then stored as a ground truth label for the image.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021304463A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title ANNOTATION OF DIGITAL IMAGES FOR MACHINE LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Rufli,%20Martin&rft.date=2021-09-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021304463A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true