ANNOTATION OF DIGITAL IMAGES FOR MACHINE LEARNING
Computer-implemented methods and apparatus are provided for annotating digital images of line plots with ground truth labels. For each digital image, such a method includes supplying image data defining the image of a line plot to a machine-learning model trained to generate a set of control points...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Rufli, Martin Kaestner, Ralf Staar, Peter Willem Jan Vincent, Elliot Jacques Dolfi, Michele Auer, Christoph Velizhev, Alexander |
description | Computer-implemented methods and apparatus are provided for annotating digital images of line plots with ground truth labels. For each digital image, such a method includes supplying image data defining the image of a line plot to a machine-learning model trained to generate a set of control points defining a spline corresponding to the line plot. The method further comprises displaying the spline, and the set of control points, superimposed on the image in a graphical user interface and, in response to user manipulation via the graphical user interface of one or more control points, dynamically adjusting the displayed spline in accordance with manipulated control points whereby the displayed spline can be adjusted for conformity with the line plot. The set of control points for the adjusted spline is then stored as a ground truth label for the image. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021304463A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021304463A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021304463A13</originalsourceid><addsrcrecordid>eNrjZDB09PPzD3EM8fT3U_B3U3DxdPcMcfRR8PR1dHcNVnDzD1LwdXT28PRzVfBxdQzy8_Rz52FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhsYGJiZmxo6GxsSpAgDQOycu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ANNOTATION OF DIGITAL IMAGES FOR MACHINE LEARNING</title><source>esp@cenet</source><creator>Rufli, Martin ; Kaestner, Ralf ; Staar, Peter Willem Jan ; Vincent, Elliot Jacques ; Dolfi, Michele ; Auer, Christoph ; Velizhev, Alexander</creator><creatorcontrib>Rufli, Martin ; Kaestner, Ralf ; Staar, Peter Willem Jan ; Vincent, Elliot Jacques ; Dolfi, Michele ; Auer, Christoph ; Velizhev, Alexander</creatorcontrib><description>Computer-implemented methods and apparatus are provided for annotating digital images of line plots with ground truth labels. For each digital image, such a method includes supplying image data defining the image of a line plot to a machine-learning model trained to generate a set of control points defining a spline corresponding to the line plot. The method further comprises displaying the spline, and the set of control points, superimposed on the image in a graphical user interface and, in response to user manipulation via the graphical user interface of one or more control points, dynamically adjusting the displayed spline in accordance with manipulated control points whereby the displayed spline can be adjusted for conformity with the line plot. The set of control points for the adjusted spline is then stored as a ground truth label for the image.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210930&DB=EPODOC&CC=US&NR=2021304463A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210930&DB=EPODOC&CC=US&NR=2021304463A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rufli, Martin</creatorcontrib><creatorcontrib>Kaestner, Ralf</creatorcontrib><creatorcontrib>Staar, Peter Willem Jan</creatorcontrib><creatorcontrib>Vincent, Elliot Jacques</creatorcontrib><creatorcontrib>Dolfi, Michele</creatorcontrib><creatorcontrib>Auer, Christoph</creatorcontrib><creatorcontrib>Velizhev, Alexander</creatorcontrib><title>ANNOTATION OF DIGITAL IMAGES FOR MACHINE LEARNING</title><description>Computer-implemented methods and apparatus are provided for annotating digital images of line plots with ground truth labels. For each digital image, such a method includes supplying image data defining the image of a line plot to a machine-learning model trained to generate a set of control points defining a spline corresponding to the line plot. The method further comprises displaying the spline, and the set of control points, superimposed on the image in a graphical user interface and, in response to user manipulation via the graphical user interface of one or more control points, dynamically adjusting the displayed spline in accordance with manipulated control points whereby the displayed spline can be adjusted for conformity with the line plot. The set of control points for the adjusted spline is then stored as a ground truth label for the image.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB09PPzD3EM8fT3U_B3U3DxdPcMcfRR8PR1dHcNVnDzD1LwdXT28PRzVfBxdQzy8_Rz52FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhsYGJiZmxo6GxsSpAgDQOycu</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Rufli, Martin</creator><creator>Kaestner, Ralf</creator><creator>Staar, Peter Willem Jan</creator><creator>Vincent, Elliot Jacques</creator><creator>Dolfi, Michele</creator><creator>Auer, Christoph</creator><creator>Velizhev, Alexander</creator><scope>EVB</scope></search><sort><creationdate>20210930</creationdate><title>ANNOTATION OF DIGITAL IMAGES FOR MACHINE LEARNING</title><author>Rufli, Martin ; Kaestner, Ralf ; Staar, Peter Willem Jan ; Vincent, Elliot Jacques ; Dolfi, Michele ; Auer, Christoph ; Velizhev, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021304463A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Rufli, Martin</creatorcontrib><creatorcontrib>Kaestner, Ralf</creatorcontrib><creatorcontrib>Staar, Peter Willem Jan</creatorcontrib><creatorcontrib>Vincent, Elliot Jacques</creatorcontrib><creatorcontrib>Dolfi, Michele</creatorcontrib><creatorcontrib>Auer, Christoph</creatorcontrib><creatorcontrib>Velizhev, Alexander</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rufli, Martin</au><au>Kaestner, Ralf</au><au>Staar, Peter Willem Jan</au><au>Vincent, Elliot Jacques</au><au>Dolfi, Michele</au><au>Auer, Christoph</au><au>Velizhev, Alexander</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ANNOTATION OF DIGITAL IMAGES FOR MACHINE LEARNING</title><date>2021-09-30</date><risdate>2021</risdate><abstract>Computer-implemented methods and apparatus are provided for annotating digital images of line plots with ground truth labels. For each digital image, such a method includes supplying image data defining the image of a line plot to a machine-learning model trained to generate a set of control points defining a spline corresponding to the line plot. The method further comprises displaying the spline, and the set of control points, superimposed on the image in a graphical user interface and, in response to user manipulation via the graphical user interface of one or more control points, dynamically adjusting the displayed spline in accordance with manipulated control points whereby the displayed spline can be adjusted for conformity with the line plot. The set of control points for the adjusted spline is then stored as a ground truth label for the image.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021304463A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | ANNOTATION OF DIGITAL IMAGES FOR MACHINE LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Rufli,%20Martin&rft.date=2021-09-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021304463A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |