SEPARATE STORAGE AND CONTROL OF STATIC AND DYNAMIC NEURAL NETWORK DATA WITHIN A NON-VOLATILE MEMORY ARRAY

Methods and apparatus are disclosed for managing the storage of static and dynamic neural network data within a non-volatile memory (NVM) die for use with deep neural networks (DNN). Some aspects relate to separate trim sets for separately configuring a static data NVM array for static input data an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Navon, Ariel, Bazarsky, Alexander
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Navon, Ariel
Bazarsky, Alexander
description Methods and apparatus are disclosed for managing the storage of static and dynamic neural network data within a non-volatile memory (NVM) die for use with deep neural networks (DNN). Some aspects relate to separate trim sets for separately configuring a static data NVM array for static input data and a dynamic data NVM array for dynamic synaptic weight data. For example, the static data NVM array may be configured via one trim set for data retention, whereas the dynamic data NVM array may be configured via another trim set for write performance. The trim sets may specify different configurations for error correction coding, write verification, and read threshold calibration, as well as different read/write voltage thresholds. In some examples, neural network regularization is provided within a DNN by setting trim parameters to encourage bit flips to avoid overfitting. Some examples relate to managing non-DNN data, such as stochastic gradient data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021304009A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021304009A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021304009A13</originalsourceid><addsrcrecordid>eNqNi8EKglAQRd20iOofBloLT2vTctAxpeebGMfElUi8IIgS7P_pEX1Aq3M5nLuM7g2dUVAJGmXBIwG6HDJ2KmyBi6BRq-xr895hHbajVtAGaMdyghwVoau0rBwgOHbxhW04WYKaapYeUAT7dbS4jY_Zb35cRduCNCtjP70GP0_j1T_9e2ib1KTJzuyNOWCy-6_6AA5vNpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SEPARATE STORAGE AND CONTROL OF STATIC AND DYNAMIC NEURAL NETWORK DATA WITHIN A NON-VOLATILE MEMORY ARRAY</title><source>esp@cenet</source><creator>Navon, Ariel ; Bazarsky, Alexander</creator><creatorcontrib>Navon, Ariel ; Bazarsky, Alexander</creatorcontrib><description>Methods and apparatus are disclosed for managing the storage of static and dynamic neural network data within a non-volatile memory (NVM) die for use with deep neural networks (DNN). Some aspects relate to separate trim sets for separately configuring a static data NVM array for static input data and a dynamic data NVM array for dynamic synaptic weight data. For example, the static data NVM array may be configured via one trim set for data retention, whereas the dynamic data NVM array may be configured via another trim set for write performance. The trim sets may specify different configurations for error correction coding, write verification, and read threshold calibration, as well as different read/write voltage thresholds. In some examples, neural network regularization is provided within a DNN by setting trim parameters to encourage bit flips to avoid overfitting. Some examples relate to managing non-DNN data, such as stochastic gradient data.</description><language>eng</language><subject>BASIC ELECTRONIC CIRCUITRY ; CALCULATING ; CODE CONVERSION IN GENERAL ; CODING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DECODING ; ELECTRICITY ; INFORMATION STORAGE ; PHYSICS ; STATIC STORES</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210930&amp;DB=EPODOC&amp;CC=US&amp;NR=2021304009A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210930&amp;DB=EPODOC&amp;CC=US&amp;NR=2021304009A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Navon, Ariel</creatorcontrib><creatorcontrib>Bazarsky, Alexander</creatorcontrib><title>SEPARATE STORAGE AND CONTROL OF STATIC AND DYNAMIC NEURAL NETWORK DATA WITHIN A NON-VOLATILE MEMORY ARRAY</title><description>Methods and apparatus are disclosed for managing the storage of static and dynamic neural network data within a non-volatile memory (NVM) die for use with deep neural networks (DNN). Some aspects relate to separate trim sets for separately configuring a static data NVM array for static input data and a dynamic data NVM array for dynamic synaptic weight data. For example, the static data NVM array may be configured via one trim set for data retention, whereas the dynamic data NVM array may be configured via another trim set for write performance. The trim sets may specify different configurations for error correction coding, write verification, and read threshold calibration, as well as different read/write voltage thresholds. In some examples, neural network regularization is provided within a DNN by setting trim parameters to encourage bit flips to avoid overfitting. Some examples relate to managing non-DNN data, such as stochastic gradient data.</description><subject>BASIC ELECTRONIC CIRCUITRY</subject><subject>CALCULATING</subject><subject>CODE CONVERSION IN GENERAL</subject><subject>CODING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DECODING</subject><subject>ELECTRICITY</subject><subject>INFORMATION STORAGE</subject><subject>PHYSICS</subject><subject>STATIC STORES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi8EKglAQRd20iOofBloLT2vTctAxpeebGMfElUi8IIgS7P_pEX1Aq3M5nLuM7g2dUVAJGmXBIwG6HDJ2KmyBi6BRq-xr895hHbajVtAGaMdyghwVoau0rBwgOHbxhW04WYKaapYeUAT7dbS4jY_Zb35cRduCNCtjP70GP0_j1T_9e2ib1KTJzuyNOWCy-6_6AA5vNpA</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Navon, Ariel</creator><creator>Bazarsky, Alexander</creator><scope>EVB</scope></search><sort><creationdate>20210930</creationdate><title>SEPARATE STORAGE AND CONTROL OF STATIC AND DYNAMIC NEURAL NETWORK DATA WITHIN A NON-VOLATILE MEMORY ARRAY</title><author>Navon, Ariel ; Bazarsky, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021304009A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>BASIC ELECTRONIC CIRCUITRY</topic><topic>CALCULATING</topic><topic>CODE CONVERSION IN GENERAL</topic><topic>CODING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DECODING</topic><topic>ELECTRICITY</topic><topic>INFORMATION STORAGE</topic><topic>PHYSICS</topic><topic>STATIC STORES</topic><toplevel>online_resources</toplevel><creatorcontrib>Navon, Ariel</creatorcontrib><creatorcontrib>Bazarsky, Alexander</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Navon, Ariel</au><au>Bazarsky, Alexander</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SEPARATE STORAGE AND CONTROL OF STATIC AND DYNAMIC NEURAL NETWORK DATA WITHIN A NON-VOLATILE MEMORY ARRAY</title><date>2021-09-30</date><risdate>2021</risdate><abstract>Methods and apparatus are disclosed for managing the storage of static and dynamic neural network data within a non-volatile memory (NVM) die for use with deep neural networks (DNN). Some aspects relate to separate trim sets for separately configuring a static data NVM array for static input data and a dynamic data NVM array for dynamic synaptic weight data. For example, the static data NVM array may be configured via one trim set for data retention, whereas the dynamic data NVM array may be configured via another trim set for write performance. The trim sets may specify different configurations for error correction coding, write verification, and read threshold calibration, as well as different read/write voltage thresholds. In some examples, neural network regularization is provided within a DNN by setting trim parameters to encourage bit flips to avoid overfitting. Some examples relate to managing non-DNN data, such as stochastic gradient data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021304009A1
source esp@cenet
subjects BASIC ELECTRONIC CIRCUITRY
CALCULATING
CODE CONVERSION IN GENERAL
CODING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DECODING
ELECTRICITY
INFORMATION STORAGE
PHYSICS
STATIC STORES
title SEPARATE STORAGE AND CONTROL OF STATIC AND DYNAMIC NEURAL NETWORK DATA WITHIN A NON-VOLATILE MEMORY ARRAY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A02%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Navon,%20Ariel&rft.date=2021-09-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021304009A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true