TECHNOLOGIES FOR DECENTRALIZED FLEET ANALYTICS

Technologies for decentralized fleet analytics are disclosed. In at least one embodiment, a local cloud service at a plant site builds a first machine learning model of one or more first streams of data associated with the plant site. The local cloud service sends the first machine learning model to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Acharya, Mithun P, Dagnino, Aldo, Harding, Jeffrey, Harper, Karl Eric
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Acharya, Mithun P
Dagnino, Aldo
Harding, Jeffrey
Harper, Karl Eric
description Technologies for decentralized fleet analytics are disclosed. In at least one embodiment, a local cloud service at a plant site builds a first machine learning model of one or more first streams of data associated with the plant site. The local cloud service sends the first machine learning model to a cloud service connected to the plant site and other plant sites. The local cloud service receives a second machine learning model from the cloud service. The second machine learning model is trained as a function of the first machine learning model and one or more machine learning models built by the other plant sites. The local cloud service updates the first machine learning model based on the second machine learning model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021295215A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021295215A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021295215A13</originalsourceid><addsrcrecordid>eNrjZNALcXX28PP38Xf3dA1WcPMPUnBxdXb1Cwly9PGMcnVRcPNxdQ1RcPRz9IkM8XQO5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhkaWpkaGpo6GxsSpAgCHUibE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TECHNOLOGIES FOR DECENTRALIZED FLEET ANALYTICS</title><source>esp@cenet</source><creator>Acharya, Mithun P ; Dagnino, Aldo ; Harding, Jeffrey ; Harper, Karl Eric</creator><creatorcontrib>Acharya, Mithun P ; Dagnino, Aldo ; Harding, Jeffrey ; Harper, Karl Eric</creatorcontrib><description>Technologies for decentralized fleet analytics are disclosed. In at least one embodiment, a local cloud service at a plant site builds a first machine learning model of one or more first streams of data associated with the plant site. The local cloud service sends the first machine learning model to a cloud service connected to the plant site and other plant sites. The local cloud service receives a second machine learning model from the cloud service. The second machine learning model is trained as a function of the first machine learning model and one or more machine learning models built by the other plant sites. The local cloud service updates the first machine learning model based on the second machine learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210923&amp;DB=EPODOC&amp;CC=US&amp;NR=2021295215A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210923&amp;DB=EPODOC&amp;CC=US&amp;NR=2021295215A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Acharya, Mithun P</creatorcontrib><creatorcontrib>Dagnino, Aldo</creatorcontrib><creatorcontrib>Harding, Jeffrey</creatorcontrib><creatorcontrib>Harper, Karl Eric</creatorcontrib><title>TECHNOLOGIES FOR DECENTRALIZED FLEET ANALYTICS</title><description>Technologies for decentralized fleet analytics are disclosed. In at least one embodiment, a local cloud service at a plant site builds a first machine learning model of one or more first streams of data associated with the plant site. The local cloud service sends the first machine learning model to a cloud service connected to the plant site and other plant sites. The local cloud service receives a second machine learning model from the cloud service. The second machine learning model is trained as a function of the first machine learning model and one or more machine learning models built by the other plant sites. The local cloud service updates the first machine learning model based on the second machine learning model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNALcXX28PP38Xf3dA1WcPMPUnBxdXb1Cwly9PGMcnVRcPNxdQ1RcPRz9IkM8XQO5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhkaWpkaGpo6GxsSpAgCHUibE</recordid><startdate>20210923</startdate><enddate>20210923</enddate><creator>Acharya, Mithun P</creator><creator>Dagnino, Aldo</creator><creator>Harding, Jeffrey</creator><creator>Harper, Karl Eric</creator><scope>EVB</scope></search><sort><creationdate>20210923</creationdate><title>TECHNOLOGIES FOR DECENTRALIZED FLEET ANALYTICS</title><author>Acharya, Mithun P ; Dagnino, Aldo ; Harding, Jeffrey ; Harper, Karl Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021295215A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Acharya, Mithun P</creatorcontrib><creatorcontrib>Dagnino, Aldo</creatorcontrib><creatorcontrib>Harding, Jeffrey</creatorcontrib><creatorcontrib>Harper, Karl Eric</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Acharya, Mithun P</au><au>Dagnino, Aldo</au><au>Harding, Jeffrey</au><au>Harper, Karl Eric</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TECHNOLOGIES FOR DECENTRALIZED FLEET ANALYTICS</title><date>2021-09-23</date><risdate>2021</risdate><abstract>Technologies for decentralized fleet analytics are disclosed. In at least one embodiment, a local cloud service at a plant site builds a first machine learning model of one or more first streams of data associated with the plant site. The local cloud service sends the first machine learning model to a cloud service connected to the plant site and other plant sites. The local cloud service receives a second machine learning model from the cloud service. The second machine learning model is trained as a function of the first machine learning model and one or more machine learning models built by the other plant sites. The local cloud service updates the first machine learning model based on the second machine learning model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021295215A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title TECHNOLOGIES FOR DECENTRALIZED FLEET ANALYTICS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Acharya,%20Mithun%20P&rft.date=2021-09-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021295215A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true