RAPID TIME-SERIES PREDICTION WITH HARDWARE-BASED RESERVOIR COMPUTER

Reservoir computing systems and methods provide rapid processing speed by the reservoir and by the output layer. A hardware implementation of reservoir computing is based on an autonomous, time-delay, Boolean network realized on a readily-available platform known as a field-programmable gate array (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CANADAY, Daniel, GAUTHIER, Daniel, GRIFFITH, Aaron
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CANADAY, Daniel
GAUTHIER, Daniel
GRIFFITH, Aaron
description Reservoir computing systems and methods provide rapid processing speed by the reservoir and by the output layer. A hardware implementation of reservoir computing is based on an autonomous, time-delay, Boolean network realized on a readily-available platform known as a field-programmable gate array (FPGA). This approach allows for a seamless coupling of the reservoir to the output layer due to the spatially simple nature of the reservoir state and because matrix multiplication of a Boolean vector can be realized with compact Boolean logic. Embodiments may be used to predict the behavior of a chaotic dynamical system.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021264242A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021264242A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021264242A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANAsDlL9hwPngI3FPSYnuaEmXNJ2LEXOqWih_j86-AFOb3lb5dgm8lCoRZ2RCTMkRk-uULzBQCVAsOwHy6gvNqMHxu_rIzG42KauIO_U5jHNq-x_VupwxeKCluU1yrpMd3nKe-yyOZranBvTGFuf_lsf8pAsng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RAPID TIME-SERIES PREDICTION WITH HARDWARE-BASED RESERVOIR COMPUTER</title><source>esp@cenet</source><creator>CANADAY, Daniel ; GAUTHIER, Daniel ; GRIFFITH, Aaron</creator><creatorcontrib>CANADAY, Daniel ; GAUTHIER, Daniel ; GRIFFITH, Aaron</creatorcontrib><description>Reservoir computing systems and methods provide rapid processing speed by the reservoir and by the output layer. A hardware implementation of reservoir computing is based on an autonomous, time-delay, Boolean network realized on a readily-available platform known as a field-programmable gate array (FPGA). This approach allows for a seamless coupling of the reservoir to the output layer due to the spatially simple nature of the reservoir state and because matrix multiplication of a Boolean vector can be realized with compact Boolean logic. Embodiments may be used to predict the behavior of a chaotic dynamical system.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210826&amp;DB=EPODOC&amp;CC=US&amp;NR=2021264242A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210826&amp;DB=EPODOC&amp;CC=US&amp;NR=2021264242A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CANADAY, Daniel</creatorcontrib><creatorcontrib>GAUTHIER, Daniel</creatorcontrib><creatorcontrib>GRIFFITH, Aaron</creatorcontrib><title>RAPID TIME-SERIES PREDICTION WITH HARDWARE-BASED RESERVOIR COMPUTER</title><description>Reservoir computing systems and methods provide rapid processing speed by the reservoir and by the output layer. A hardware implementation of reservoir computing is based on an autonomous, time-delay, Boolean network realized on a readily-available platform known as a field-programmable gate array (FPGA). This approach allows for a seamless coupling of the reservoir to the output layer due to the spatially simple nature of the reservoir state and because matrix multiplication of a Boolean vector can be realized with compact Boolean logic. Embodiments may be used to predict the behavior of a chaotic dynamical system.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQANAsDlL9hwPngI3FPSYnuaEmXNJ2LEXOqWih_j86-AFOb3lb5dgm8lCoRZ2RCTMkRk-uULzBQCVAsOwHy6gvNqMHxu_rIzG42KauIO_U5jHNq-x_VupwxeKCluU1yrpMd3nKe-yyOZranBvTGFuf_lsf8pAsng</recordid><startdate>20210826</startdate><enddate>20210826</enddate><creator>CANADAY, Daniel</creator><creator>GAUTHIER, Daniel</creator><creator>GRIFFITH, Aaron</creator><scope>EVB</scope></search><sort><creationdate>20210826</creationdate><title>RAPID TIME-SERIES PREDICTION WITH HARDWARE-BASED RESERVOIR COMPUTER</title><author>CANADAY, Daniel ; GAUTHIER, Daniel ; GRIFFITH, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021264242A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CANADAY, Daniel</creatorcontrib><creatorcontrib>GAUTHIER, Daniel</creatorcontrib><creatorcontrib>GRIFFITH, Aaron</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CANADAY, Daniel</au><au>GAUTHIER, Daniel</au><au>GRIFFITH, Aaron</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RAPID TIME-SERIES PREDICTION WITH HARDWARE-BASED RESERVOIR COMPUTER</title><date>2021-08-26</date><risdate>2021</risdate><abstract>Reservoir computing systems and methods provide rapid processing speed by the reservoir and by the output layer. A hardware implementation of reservoir computing is based on an autonomous, time-delay, Boolean network realized on a readily-available platform known as a field-programmable gate array (FPGA). This approach allows for a seamless coupling of the reservoir to the output layer due to the spatially simple nature of the reservoir state and because matrix multiplication of a Boolean vector can be realized with compact Boolean logic. Embodiments may be used to predict the behavior of a chaotic dynamical system.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021264242A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title RAPID TIME-SERIES PREDICTION WITH HARDWARE-BASED RESERVOIR COMPUTER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CANADAY,%20Daniel&rft.date=2021-08-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021264242A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true