SYSTEM AND METHOD FOR MACHINE LEARNING FOR SYSTEM DEPLOYMENTS WITHOUT PERFORMANCE REGRESSIONS

Methods of machine learning for system deployments without performance regressions are performed by systems and devices. A performance safeguard system is used to design pre-production experiments for determining the production readiness of learned models based on a pre-production budget by leveragi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Friedman, Marc T, Weimer, Markus, Shaffer, Irene Rogan, Ramani, Vijay Kumar, Roy, Abhishek, Qiao, Shi, Ammerlaan, Remmelt Herbert Lieve, Orenberg, Peter, Hossain, H M Sajjad, Antonius, Gilbert, Jindal, Alekh, Srinivasan, Soundararajan, Rosenblatt, Lucas, Patel, Hiren Shantilal
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Friedman, Marc T
Weimer, Markus
Shaffer, Irene Rogan
Ramani, Vijay Kumar
Roy, Abhishek
Qiao, Shi
Ammerlaan, Remmelt Herbert Lieve
Orenberg, Peter
Hossain, H M Sajjad
Antonius, Gilbert
Jindal, Alekh
Srinivasan, Soundararajan
Rosenblatt, Lucas
Patel, Hiren Shantilal
description Methods of machine learning for system deployments without performance regressions are performed by systems and devices. A performance safeguard system is used to design pre-production experiments for determining the production readiness of learned models based on a pre-production budget by leveraging big data processing infrastructure and deploying a large set of learned or optimized models for its query optimizer. A pipeline for learning and training differentiates the impact of query plans with and without the learned or optimized models, selects plan differences that are likely to lead to most dramatic performance difference, runs a constrained set of pre-production experiments to empirically observe the runtime performance, and finally picks the models that are expected to lead to consistently improved performance for deployment. The performance safeguard system enables safe deployment not just for learned or optimized models but also for additional of other ML-for-Systems features.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021263932A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021263932A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021263932A13</originalsourceid><addsrcrecordid>eNqNy0EKwjAQheFsXIh6hwHXgk1BcBmaaRNoJiWTUrqQUiSuRAv1_likB3D14Od7W3HjniM6UKTBYTReQ-kDOFUYSwg1qkCWql9cqcam9r1DigydXS5thAbDIpyiAiFgFZDZeuK92DzG55wO6-7EscRYmFOa3kOap_GeXukztCzPMpOX_JpLleX_qS_sCTQT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR MACHINE LEARNING FOR SYSTEM DEPLOYMENTS WITHOUT PERFORMANCE REGRESSIONS</title><source>esp@cenet</source><creator>Friedman, Marc T ; Weimer, Markus ; Shaffer, Irene Rogan ; Ramani, Vijay Kumar ; Roy, Abhishek ; Qiao, Shi ; Ammerlaan, Remmelt Herbert Lieve ; Orenberg, Peter ; Hossain, H M Sajjad ; Antonius, Gilbert ; Jindal, Alekh ; Srinivasan, Soundararajan ; Rosenblatt, Lucas ; Patel, Hiren Shantilal</creator><creatorcontrib>Friedman, Marc T ; Weimer, Markus ; Shaffer, Irene Rogan ; Ramani, Vijay Kumar ; Roy, Abhishek ; Qiao, Shi ; Ammerlaan, Remmelt Herbert Lieve ; Orenberg, Peter ; Hossain, H M Sajjad ; Antonius, Gilbert ; Jindal, Alekh ; Srinivasan, Soundararajan ; Rosenblatt, Lucas ; Patel, Hiren Shantilal</creatorcontrib><description>Methods of machine learning for system deployments without performance regressions are performed by systems and devices. A performance safeguard system is used to design pre-production experiments for determining the production readiness of learned models based on a pre-production budget by leveraging big data processing infrastructure and deploying a large set of learned or optimized models for its query optimizer. A pipeline for learning and training differentiates the impact of query plans with and without the learned or optimized models, selects plan differences that are likely to lead to most dramatic performance difference, runs a constrained set of pre-production experiments to empirically observe the runtime performance, and finally picks the models that are expected to lead to consistently improved performance for deployment. The performance safeguard system enables safe deployment not just for learned or optimized models but also for additional of other ML-for-Systems features.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210826&amp;DB=EPODOC&amp;CC=US&amp;NR=2021263932A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210826&amp;DB=EPODOC&amp;CC=US&amp;NR=2021263932A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Friedman, Marc T</creatorcontrib><creatorcontrib>Weimer, Markus</creatorcontrib><creatorcontrib>Shaffer, Irene Rogan</creatorcontrib><creatorcontrib>Ramani, Vijay Kumar</creatorcontrib><creatorcontrib>Roy, Abhishek</creatorcontrib><creatorcontrib>Qiao, Shi</creatorcontrib><creatorcontrib>Ammerlaan, Remmelt Herbert Lieve</creatorcontrib><creatorcontrib>Orenberg, Peter</creatorcontrib><creatorcontrib>Hossain, H M Sajjad</creatorcontrib><creatorcontrib>Antonius, Gilbert</creatorcontrib><creatorcontrib>Jindal, Alekh</creatorcontrib><creatorcontrib>Srinivasan, Soundararajan</creatorcontrib><creatorcontrib>Rosenblatt, Lucas</creatorcontrib><creatorcontrib>Patel, Hiren Shantilal</creatorcontrib><title>SYSTEM AND METHOD FOR MACHINE LEARNING FOR SYSTEM DEPLOYMENTS WITHOUT PERFORMANCE REGRESSIONS</title><description>Methods of machine learning for system deployments without performance regressions are performed by systems and devices. A performance safeguard system is used to design pre-production experiments for determining the production readiness of learned models based on a pre-production budget by leveraging big data processing infrastructure and deploying a large set of learned or optimized models for its query optimizer. A pipeline for learning and training differentiates the impact of query plans with and without the learned or optimized models, selects plan differences that are likely to lead to most dramatic performance difference, runs a constrained set of pre-production experiments to empirically observe the runtime performance, and finally picks the models that are expected to lead to consistently improved performance for deployment. The performance safeguard system enables safe deployment not just for learned or optimized models but also for additional of other ML-for-Systems features.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy0EKwjAQheFsXIh6hwHXgk1BcBmaaRNoJiWTUrqQUiSuRAv1_likB3D14Od7W3HjniM6UKTBYTReQ-kDOFUYSwg1qkCWql9cqcam9r1DigydXS5thAbDIpyiAiFgFZDZeuK92DzG55wO6-7EscRYmFOa3kOap_GeXukztCzPMpOX_JpLleX_qS_sCTQT</recordid><startdate>20210826</startdate><enddate>20210826</enddate><creator>Friedman, Marc T</creator><creator>Weimer, Markus</creator><creator>Shaffer, Irene Rogan</creator><creator>Ramani, Vijay Kumar</creator><creator>Roy, Abhishek</creator><creator>Qiao, Shi</creator><creator>Ammerlaan, Remmelt Herbert Lieve</creator><creator>Orenberg, Peter</creator><creator>Hossain, H M Sajjad</creator><creator>Antonius, Gilbert</creator><creator>Jindal, Alekh</creator><creator>Srinivasan, Soundararajan</creator><creator>Rosenblatt, Lucas</creator><creator>Patel, Hiren Shantilal</creator><scope>EVB</scope></search><sort><creationdate>20210826</creationdate><title>SYSTEM AND METHOD FOR MACHINE LEARNING FOR SYSTEM DEPLOYMENTS WITHOUT PERFORMANCE REGRESSIONS</title><author>Friedman, Marc T ; Weimer, Markus ; Shaffer, Irene Rogan ; Ramani, Vijay Kumar ; Roy, Abhishek ; Qiao, Shi ; Ammerlaan, Remmelt Herbert Lieve ; Orenberg, Peter ; Hossain, H M Sajjad ; Antonius, Gilbert ; Jindal, Alekh ; Srinivasan, Soundararajan ; Rosenblatt, Lucas ; Patel, Hiren Shantilal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021263932A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Friedman, Marc T</creatorcontrib><creatorcontrib>Weimer, Markus</creatorcontrib><creatorcontrib>Shaffer, Irene Rogan</creatorcontrib><creatorcontrib>Ramani, Vijay Kumar</creatorcontrib><creatorcontrib>Roy, Abhishek</creatorcontrib><creatorcontrib>Qiao, Shi</creatorcontrib><creatorcontrib>Ammerlaan, Remmelt Herbert Lieve</creatorcontrib><creatorcontrib>Orenberg, Peter</creatorcontrib><creatorcontrib>Hossain, H M Sajjad</creatorcontrib><creatorcontrib>Antonius, Gilbert</creatorcontrib><creatorcontrib>Jindal, Alekh</creatorcontrib><creatorcontrib>Srinivasan, Soundararajan</creatorcontrib><creatorcontrib>Rosenblatt, Lucas</creatorcontrib><creatorcontrib>Patel, Hiren Shantilal</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Friedman, Marc T</au><au>Weimer, Markus</au><au>Shaffer, Irene Rogan</au><au>Ramani, Vijay Kumar</au><au>Roy, Abhishek</au><au>Qiao, Shi</au><au>Ammerlaan, Remmelt Herbert Lieve</au><au>Orenberg, Peter</au><au>Hossain, H M Sajjad</au><au>Antonius, Gilbert</au><au>Jindal, Alekh</au><au>Srinivasan, Soundararajan</au><au>Rosenblatt, Lucas</au><au>Patel, Hiren Shantilal</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR MACHINE LEARNING FOR SYSTEM DEPLOYMENTS WITHOUT PERFORMANCE REGRESSIONS</title><date>2021-08-26</date><risdate>2021</risdate><abstract>Methods of machine learning for system deployments without performance regressions are performed by systems and devices. A performance safeguard system is used to design pre-production experiments for determining the production readiness of learned models based on a pre-production budget by leveraging big data processing infrastructure and deploying a large set of learned or optimized models for its query optimizer. A pipeline for learning and training differentiates the impact of query plans with and without the learned or optimized models, selects plan differences that are likely to lead to most dramatic performance difference, runs a constrained set of pre-production experiments to empirically observe the runtime performance, and finally picks the models that are expected to lead to consistently improved performance for deployment. The performance safeguard system enables safe deployment not just for learned or optimized models but also for additional of other ML-for-Systems features.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021263932A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title SYSTEM AND METHOD FOR MACHINE LEARNING FOR SYSTEM DEPLOYMENTS WITHOUT PERFORMANCE REGRESSIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Friedman,%20Marc%20T&rft.date=2021-08-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021263932A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true