AI-BASED KEYWORK PREDICTIONS FOR TITLES

Systems and methods for managing keyword predictions for proposed titles are provided. In example embodiments, a network system receives, from a user during a publication creation process, a proposed title for a publication associated with an item. The proposed title includes a plurality of tokens,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fuchs, Gilad Eliyahu, Acriche, Yoni
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Fuchs, Gilad Eliyahu
Acriche, Yoni
description Systems and methods for managing keyword predictions for proposed titles are provided. In example embodiments, a network system receives, from a user during a publication creation process, a proposed title for a publication associated with an item. The proposed title includes a plurality of tokens, whereby the plurality of tokens comprises at least all non-stock words in the proposed title. Based on the proposed title, the network system identifies an importance of each token of the plurality of tokens in the proposed title. The network system then causes presentation of a user interface that visually indicates the importance of each token of the plurality of tokens in the proposed title.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021241073A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021241073A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021241073A13</originalsourceid><addsrcrecordid>eNrjZFB39NR1cgx2dVHwdo0M9w_yVggIcnXxdA7x9PcLVnDzD1II8QzxcQ3mYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkaGRiaGBubGjobGxKkCAHByJLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AI-BASED KEYWORK PREDICTIONS FOR TITLES</title><source>esp@cenet</source><creator>Fuchs, Gilad Eliyahu ; Acriche, Yoni</creator><creatorcontrib>Fuchs, Gilad Eliyahu ; Acriche, Yoni</creatorcontrib><description>Systems and methods for managing keyword predictions for proposed titles are provided. In example embodiments, a network system receives, from a user during a publication creation process, a proposed title for a publication associated with an item. The proposed title includes a plurality of tokens, whereby the plurality of tokens comprises at least all non-stock words in the proposed title. Based on the proposed title, the network system identifies an importance of each token of the plurality of tokens in the proposed title. The network system then causes presentation of a user interface that visually indicates the importance of each token of the plurality of tokens in the proposed title.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210805&amp;DB=EPODOC&amp;CC=US&amp;NR=2021241073A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210805&amp;DB=EPODOC&amp;CC=US&amp;NR=2021241073A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fuchs, Gilad Eliyahu</creatorcontrib><creatorcontrib>Acriche, Yoni</creatorcontrib><title>AI-BASED KEYWORK PREDICTIONS FOR TITLES</title><description>Systems and methods for managing keyword predictions for proposed titles are provided. In example embodiments, a network system receives, from a user during a publication creation process, a proposed title for a publication associated with an item. The proposed title includes a plurality of tokens, whereby the plurality of tokens comprises at least all non-stock words in the proposed title. Based on the proposed title, the network system identifies an importance of each token of the plurality of tokens in the proposed title. The network system then causes presentation of a user interface that visually indicates the importance of each token of the plurality of tokens in the proposed title.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB39NR1cgx2dVHwdo0M9w_yVggIcnXxdA7x9PcLVnDzD1II8QzxcQ3mYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkaGRiaGBubGjobGxKkCAHByJLA</recordid><startdate>20210805</startdate><enddate>20210805</enddate><creator>Fuchs, Gilad Eliyahu</creator><creator>Acriche, Yoni</creator><scope>EVB</scope></search><sort><creationdate>20210805</creationdate><title>AI-BASED KEYWORK PREDICTIONS FOR TITLES</title><author>Fuchs, Gilad Eliyahu ; Acriche, Yoni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021241073A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Fuchs, Gilad Eliyahu</creatorcontrib><creatorcontrib>Acriche, Yoni</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fuchs, Gilad Eliyahu</au><au>Acriche, Yoni</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AI-BASED KEYWORK PREDICTIONS FOR TITLES</title><date>2021-08-05</date><risdate>2021</risdate><abstract>Systems and methods for managing keyword predictions for proposed titles are provided. In example embodiments, a network system receives, from a user during a publication creation process, a proposed title for a publication associated with an item. The proposed title includes a plurality of tokens, whereby the plurality of tokens comprises at least all non-stock words in the proposed title. Based on the proposed title, the network system identifies an importance of each token of the plurality of tokens in the proposed title. The network system then causes presentation of a user interface that visually indicates the importance of each token of the plurality of tokens in the proposed title.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021241073A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title AI-BASED KEYWORK PREDICTIONS FOR TITLES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Fuchs,%20Gilad%20Eliyahu&rft.date=2021-08-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021241073A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true