METHODS, MEDIUMS, AND SYSTEMS FOR AN UNSUPERVISED PREDICTIVE LEARNING SYSTEM

Exemplary embodiments relate to techniques for integrating common sense into a machine learning (ML) system. In contrast to existing machine learning algorithms that search for statistical correlations between concepts, exemplary embodiments attempt to learn the semantic relationships or causality b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: FLOREZ CHOQUE, Omar
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FLOREZ CHOQUE, Omar
description Exemplary embodiments relate to techniques for integrating common sense into a machine learning (ML) system. In contrast to existing machine learning algorithms that search for statistical correlations between concepts, exemplary embodiments attempt to learn the semantic relationships or causality between the concepts. This may be accomplished by training an algorithm or data structure to learn similar vector representations of words present in the same context (e.g., that are present together in the same sentence). The resulting AI/ML structure may be used to guide the generation of a causal graph having predictive capabilities. This causal graph may represent semantic relationships and/or causation between concepts, and hence may be employed to introduce a degree of common sense in the machine learning system.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021232972A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021232972A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021232972A13</originalsourceid><addsrcrecordid>eNrjZPDxdQ3x8HcJ1lHwdXXxDPUFMhz9XBSCI4NDXH2DFdz8g4B8hVC_4NAA16Awz2BXF4WAIKBK5xDPMFcFH1fHID9PP3eoeh4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGhkbGRpbuRoaEycKgCD4i8V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS, MEDIUMS, AND SYSTEMS FOR AN UNSUPERVISED PREDICTIVE LEARNING SYSTEM</title><source>esp@cenet</source><creator>FLOREZ CHOQUE, Omar</creator><creatorcontrib>FLOREZ CHOQUE, Omar</creatorcontrib><description>Exemplary embodiments relate to techniques for integrating common sense into a machine learning (ML) system. In contrast to existing machine learning algorithms that search for statistical correlations between concepts, exemplary embodiments attempt to learn the semantic relationships or causality between the concepts. This may be accomplished by training an algorithm or data structure to learn similar vector representations of words present in the same context (e.g., that are present together in the same sentence). The resulting AI/ML structure may be used to guide the generation of a causal graph having predictive capabilities. This causal graph may represent semantic relationships and/or causation between concepts, and hence may be employed to introduce a degree of common sense in the machine learning system.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210729&amp;DB=EPODOC&amp;CC=US&amp;NR=2021232972A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210729&amp;DB=EPODOC&amp;CC=US&amp;NR=2021232972A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FLOREZ CHOQUE, Omar</creatorcontrib><title>METHODS, MEDIUMS, AND SYSTEMS FOR AN UNSUPERVISED PREDICTIVE LEARNING SYSTEM</title><description>Exemplary embodiments relate to techniques for integrating common sense into a machine learning (ML) system. In contrast to existing machine learning algorithms that search for statistical correlations between concepts, exemplary embodiments attempt to learn the semantic relationships or causality between the concepts. This may be accomplished by training an algorithm or data structure to learn similar vector representations of words present in the same context (e.g., that are present together in the same sentence). The resulting AI/ML structure may be used to guide the generation of a causal graph having predictive capabilities. This causal graph may represent semantic relationships and/or causation between concepts, and hence may be employed to introduce a degree of common sense in the machine learning system.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDxdQ3x8HcJ1lHwdXXxDPUFMhz9XBSCI4NDXH2DFdz8g4B8hVC_4NAA16Awz2BXF4WAIKBK5xDPMFcFH1fHID9PP3eoeh4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGhkbGRpbuRoaEycKgCD4i8V</recordid><startdate>20210729</startdate><enddate>20210729</enddate><creator>FLOREZ CHOQUE, Omar</creator><scope>EVB</scope></search><sort><creationdate>20210729</creationdate><title>METHODS, MEDIUMS, AND SYSTEMS FOR AN UNSUPERVISED PREDICTIVE LEARNING SYSTEM</title><author>FLOREZ CHOQUE, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021232972A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>FLOREZ CHOQUE, Omar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FLOREZ CHOQUE, Omar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS, MEDIUMS, AND SYSTEMS FOR AN UNSUPERVISED PREDICTIVE LEARNING SYSTEM</title><date>2021-07-29</date><risdate>2021</risdate><abstract>Exemplary embodiments relate to techniques for integrating common sense into a machine learning (ML) system. In contrast to existing machine learning algorithms that search for statistical correlations between concepts, exemplary embodiments attempt to learn the semantic relationships or causality between the concepts. This may be accomplished by training an algorithm or data structure to learn similar vector representations of words present in the same context (e.g., that are present together in the same sentence). The resulting AI/ML structure may be used to guide the generation of a causal graph having predictive capabilities. This causal graph may represent semantic relationships and/or causation between concepts, and hence may be employed to introduce a degree of common sense in the machine learning system.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021232972A1
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title METHODS, MEDIUMS, AND SYSTEMS FOR AN UNSUPERVISED PREDICTIVE LEARNING SYSTEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FLOREZ%20CHOQUE,%20Omar&rft.date=2021-07-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021232972A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true