ARCHITECTURES FOR NATURAL LANGUAGE PROCESSING

Systems are presented for generating a natural language model. The system may comprise a database module, an application program interface (API) module, a background processing module, and an applications module, each stored on the at least one memory and executable by the at least one processor. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hinrichs, Martha G, Brenier, Jason, Saxena, Tripti, Nunez, Edgar, King, Gary C, Sarin, Ujjwal, Gilchrist-Scott, Andrew, Callahan, Brendan D, Most, Haley, Mechanic, Ross, Casbon, Michelle, Nair, Aneesh, Erie, Schuyler D, Walker, Christopher, Tepper, Paul A, Luger, Sarah K, Basavaraj, Veena, Schnoebelen, Tyler J, Munro, Robert J, Long, Jessica D, Robinson, James B
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hinrichs, Martha G
Brenier, Jason
Saxena, Tripti
Nunez, Edgar
King, Gary C
Sarin, Ujjwal
Gilchrist-Scott, Andrew
Callahan, Brendan D
Most, Haley
Mechanic, Ross
Casbon, Michelle
Nair, Aneesh
Erie, Schuyler D
Walker, Christopher
Tepper, Paul A
Luger, Sarah K
Basavaraj, Veena
Schnoebelen, Tyler J
Munro, Robert J
Long, Jessica D
Robinson, James B
description Systems are presented for generating a natural language model. The system may comprise a database module, an application program interface (API) module, a background processing module, and an applications module, each stored on the at least one memory and executable by the at least one processor. The system may be configured to generate the natural language model by: ingesting training data, generating a hierarchical data structure, selecting a plurality of documents among the training data to be annotated, generating an annotation prompt for each document configured to elicit an annotation about said document, receiving the annotation based on the annotation prompt, and generating the natural language model using an adaptive machine learning process configured to determine patterns among the annotations for how the documents in the training data are to be subdivided according to the at least two topical nodes of the hierarchical data structure.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021232762A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021232762A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021232762A13</originalsourceid><addsrcrecordid>eNrjZNB1DHL28AxxdQ4JDXINVnDzD1LwcwSyHX0UfBz93EMd3V0VAoL8nV2Dgz393HkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkaGRsZG5mZGjoTFxqgBr2SaT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ARCHITECTURES FOR NATURAL LANGUAGE PROCESSING</title><source>esp@cenet</source><creator>Hinrichs, Martha G ; Brenier, Jason ; Saxena, Tripti ; Nunez, Edgar ; King, Gary C ; Sarin, Ujjwal ; Gilchrist-Scott, Andrew ; Callahan, Brendan D ; Most, Haley ; Mechanic, Ross ; Casbon, Michelle ; Nair, Aneesh ; Erie, Schuyler D ; Walker, Christopher ; Tepper, Paul A ; Luger, Sarah K ; Basavaraj, Veena ; Schnoebelen, Tyler J ; Munro, Robert J ; Long, Jessica D ; Robinson, James B</creator><creatorcontrib>Hinrichs, Martha G ; Brenier, Jason ; Saxena, Tripti ; Nunez, Edgar ; King, Gary C ; Sarin, Ujjwal ; Gilchrist-Scott, Andrew ; Callahan, Brendan D ; Most, Haley ; Mechanic, Ross ; Casbon, Michelle ; Nair, Aneesh ; Erie, Schuyler D ; Walker, Christopher ; Tepper, Paul A ; Luger, Sarah K ; Basavaraj, Veena ; Schnoebelen, Tyler J ; Munro, Robert J ; Long, Jessica D ; Robinson, James B</creatorcontrib><description>Systems are presented for generating a natural language model. The system may comprise a database module, an application program interface (API) module, a background processing module, and an applications module, each stored on the at least one memory and executable by the at least one processor. The system may be configured to generate the natural language model by: ingesting training data, generating a hierarchical data structure, selecting a plurality of documents among the training data to be annotated, generating an annotation prompt for each document configured to elicit an annotation about said document, receiving the annotation based on the annotation prompt, and generating the natural language model using an adaptive machine learning process configured to determine patterns among the annotations for how the documents in the training data are to be subdivided according to the at least two topical nodes of the hierarchical data structure.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210729&amp;DB=EPODOC&amp;CC=US&amp;NR=2021232762A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210729&amp;DB=EPODOC&amp;CC=US&amp;NR=2021232762A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hinrichs, Martha G</creatorcontrib><creatorcontrib>Brenier, Jason</creatorcontrib><creatorcontrib>Saxena, Tripti</creatorcontrib><creatorcontrib>Nunez, Edgar</creatorcontrib><creatorcontrib>King, Gary C</creatorcontrib><creatorcontrib>Sarin, Ujjwal</creatorcontrib><creatorcontrib>Gilchrist-Scott, Andrew</creatorcontrib><creatorcontrib>Callahan, Brendan D</creatorcontrib><creatorcontrib>Most, Haley</creatorcontrib><creatorcontrib>Mechanic, Ross</creatorcontrib><creatorcontrib>Casbon, Michelle</creatorcontrib><creatorcontrib>Nair, Aneesh</creatorcontrib><creatorcontrib>Erie, Schuyler D</creatorcontrib><creatorcontrib>Walker, Christopher</creatorcontrib><creatorcontrib>Tepper, Paul A</creatorcontrib><creatorcontrib>Luger, Sarah K</creatorcontrib><creatorcontrib>Basavaraj, Veena</creatorcontrib><creatorcontrib>Schnoebelen, Tyler J</creatorcontrib><creatorcontrib>Munro, Robert J</creatorcontrib><creatorcontrib>Long, Jessica D</creatorcontrib><creatorcontrib>Robinson, James B</creatorcontrib><title>ARCHITECTURES FOR NATURAL LANGUAGE PROCESSING</title><description>Systems are presented for generating a natural language model. The system may comprise a database module, an application program interface (API) module, a background processing module, and an applications module, each stored on the at least one memory and executable by the at least one processor. The system may be configured to generate the natural language model by: ingesting training data, generating a hierarchical data structure, selecting a plurality of documents among the training data to be annotated, generating an annotation prompt for each document configured to elicit an annotation about said document, receiving the annotation based on the annotation prompt, and generating the natural language model using an adaptive machine learning process configured to determine patterns among the annotations for how the documents in the training data are to be subdivided according to the at least two topical nodes of the hierarchical data structure.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB1DHL28AxxdQ4JDXINVnDzD1LwcwSyHX0UfBz93EMd3V0VAoL8nV2Dgz393HkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkaGRsZG5mZGjoTFxqgBr2SaT</recordid><startdate>20210729</startdate><enddate>20210729</enddate><creator>Hinrichs, Martha G</creator><creator>Brenier, Jason</creator><creator>Saxena, Tripti</creator><creator>Nunez, Edgar</creator><creator>King, Gary C</creator><creator>Sarin, Ujjwal</creator><creator>Gilchrist-Scott, Andrew</creator><creator>Callahan, Brendan D</creator><creator>Most, Haley</creator><creator>Mechanic, Ross</creator><creator>Casbon, Michelle</creator><creator>Nair, Aneesh</creator><creator>Erie, Schuyler D</creator><creator>Walker, Christopher</creator><creator>Tepper, Paul A</creator><creator>Luger, Sarah K</creator><creator>Basavaraj, Veena</creator><creator>Schnoebelen, Tyler J</creator><creator>Munro, Robert J</creator><creator>Long, Jessica D</creator><creator>Robinson, James B</creator><scope>EVB</scope></search><sort><creationdate>20210729</creationdate><title>ARCHITECTURES FOR NATURAL LANGUAGE PROCESSING</title><author>Hinrichs, Martha G ; Brenier, Jason ; Saxena, Tripti ; Nunez, Edgar ; King, Gary C ; Sarin, Ujjwal ; Gilchrist-Scott, Andrew ; Callahan, Brendan D ; Most, Haley ; Mechanic, Ross ; Casbon, Michelle ; Nair, Aneesh ; Erie, Schuyler D ; Walker, Christopher ; Tepper, Paul A ; Luger, Sarah K ; Basavaraj, Veena ; Schnoebelen, Tyler J ; Munro, Robert J ; Long, Jessica D ; Robinson, James B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021232762A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Hinrichs, Martha G</creatorcontrib><creatorcontrib>Brenier, Jason</creatorcontrib><creatorcontrib>Saxena, Tripti</creatorcontrib><creatorcontrib>Nunez, Edgar</creatorcontrib><creatorcontrib>King, Gary C</creatorcontrib><creatorcontrib>Sarin, Ujjwal</creatorcontrib><creatorcontrib>Gilchrist-Scott, Andrew</creatorcontrib><creatorcontrib>Callahan, Brendan D</creatorcontrib><creatorcontrib>Most, Haley</creatorcontrib><creatorcontrib>Mechanic, Ross</creatorcontrib><creatorcontrib>Casbon, Michelle</creatorcontrib><creatorcontrib>Nair, Aneesh</creatorcontrib><creatorcontrib>Erie, Schuyler D</creatorcontrib><creatorcontrib>Walker, Christopher</creatorcontrib><creatorcontrib>Tepper, Paul A</creatorcontrib><creatorcontrib>Luger, Sarah K</creatorcontrib><creatorcontrib>Basavaraj, Veena</creatorcontrib><creatorcontrib>Schnoebelen, Tyler J</creatorcontrib><creatorcontrib>Munro, Robert J</creatorcontrib><creatorcontrib>Long, Jessica D</creatorcontrib><creatorcontrib>Robinson, James B</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hinrichs, Martha G</au><au>Brenier, Jason</au><au>Saxena, Tripti</au><au>Nunez, Edgar</au><au>King, Gary C</au><au>Sarin, Ujjwal</au><au>Gilchrist-Scott, Andrew</au><au>Callahan, Brendan D</au><au>Most, Haley</au><au>Mechanic, Ross</au><au>Casbon, Michelle</au><au>Nair, Aneesh</au><au>Erie, Schuyler D</au><au>Walker, Christopher</au><au>Tepper, Paul A</au><au>Luger, Sarah K</au><au>Basavaraj, Veena</au><au>Schnoebelen, Tyler J</au><au>Munro, Robert J</au><au>Long, Jessica D</au><au>Robinson, James B</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ARCHITECTURES FOR NATURAL LANGUAGE PROCESSING</title><date>2021-07-29</date><risdate>2021</risdate><abstract>Systems are presented for generating a natural language model. The system may comprise a database module, an application program interface (API) module, a background processing module, and an applications module, each stored on the at least one memory and executable by the at least one processor. The system may be configured to generate the natural language model by: ingesting training data, generating a hierarchical data structure, selecting a plurality of documents among the training data to be annotated, generating an annotation prompt for each document configured to elicit an annotation about said document, receiving the annotation based on the annotation prompt, and generating the natural language model using an adaptive machine learning process configured to determine patterns among the annotations for how the documents in the training data are to be subdivided according to the at least two topical nodes of the hierarchical data structure.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021232762A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title ARCHITECTURES FOR NATURAL LANGUAGE PROCESSING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hinrichs,%20Martha%20G&rft.date=2021-07-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021232762A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true