ARCHITECTURES FOR NATURAL LANGUAGE PROCESSING
Systems are presented for generating a natural language model. The system may comprise a database module, an application program interface (API) module, a background processing module, and an applications module, each stored on the at least one memory and executable by the at least one processor. Th...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Hinrichs, Martha G Brenier, Jason Saxena, Tripti Nunez, Edgar King, Gary C Sarin, Ujjwal Gilchrist-Scott, Andrew Callahan, Brendan D Most, Haley Mechanic, Ross Casbon, Michelle Nair, Aneesh Erie, Schuyler D Walker, Christopher Tepper, Paul A Luger, Sarah K Basavaraj, Veena Schnoebelen, Tyler J Munro, Robert J Long, Jessica D Robinson, James B |
description | Systems are presented for generating a natural language model. The system may comprise a database module, an application program interface (API) module, a background processing module, and an applications module, each stored on the at least one memory and executable by the at least one processor. The system may be configured to generate the natural language model by: ingesting training data, generating a hierarchical data structure, selecting a plurality of documents among the training data to be annotated, generating an annotation prompt for each document configured to elicit an annotation about said document, receiving the annotation based on the annotation prompt, and generating the natural language model using an adaptive machine learning process configured to determine patterns among the annotations for how the documents in the training data are to be subdivided according to the at least two topical nodes of the hierarchical data structure. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021232762A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021232762A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021232762A13</originalsourceid><addsrcrecordid>eNrjZNB1DHL28AxxdQ4JDXINVnDzD1LwcwSyHX0UfBz93EMd3V0VAoL8nV2Dgz393HkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkaGRsZG5mZGjoTFxqgBr2SaT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ARCHITECTURES FOR NATURAL LANGUAGE PROCESSING</title><source>esp@cenet</source><creator>Hinrichs, Martha G ; Brenier, Jason ; Saxena, Tripti ; Nunez, Edgar ; King, Gary C ; Sarin, Ujjwal ; Gilchrist-Scott, Andrew ; Callahan, Brendan D ; Most, Haley ; Mechanic, Ross ; Casbon, Michelle ; Nair, Aneesh ; Erie, Schuyler D ; Walker, Christopher ; Tepper, Paul A ; Luger, Sarah K ; Basavaraj, Veena ; Schnoebelen, Tyler J ; Munro, Robert J ; Long, Jessica D ; Robinson, James B</creator><creatorcontrib>Hinrichs, Martha G ; Brenier, Jason ; Saxena, Tripti ; Nunez, Edgar ; King, Gary C ; Sarin, Ujjwal ; Gilchrist-Scott, Andrew ; Callahan, Brendan D ; Most, Haley ; Mechanic, Ross ; Casbon, Michelle ; Nair, Aneesh ; Erie, Schuyler D ; Walker, Christopher ; Tepper, Paul A ; Luger, Sarah K ; Basavaraj, Veena ; Schnoebelen, Tyler J ; Munro, Robert J ; Long, Jessica D ; Robinson, James B</creatorcontrib><description>Systems are presented for generating a natural language model. The system may comprise a database module, an application program interface (API) module, a background processing module, and an applications module, each stored on the at least one memory and executable by the at least one processor. The system may be configured to generate the natural language model by: ingesting training data, generating a hierarchical data structure, selecting a plurality of documents among the training data to be annotated, generating an annotation prompt for each document configured to elicit an annotation about said document, receiving the annotation based on the annotation prompt, and generating the natural language model using an adaptive machine learning process configured to determine patterns among the annotations for how the documents in the training data are to be subdivided according to the at least two topical nodes of the hierarchical data structure.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210729&DB=EPODOC&CC=US&NR=2021232762A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210729&DB=EPODOC&CC=US&NR=2021232762A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hinrichs, Martha G</creatorcontrib><creatorcontrib>Brenier, Jason</creatorcontrib><creatorcontrib>Saxena, Tripti</creatorcontrib><creatorcontrib>Nunez, Edgar</creatorcontrib><creatorcontrib>King, Gary C</creatorcontrib><creatorcontrib>Sarin, Ujjwal</creatorcontrib><creatorcontrib>Gilchrist-Scott, Andrew</creatorcontrib><creatorcontrib>Callahan, Brendan D</creatorcontrib><creatorcontrib>Most, Haley</creatorcontrib><creatorcontrib>Mechanic, Ross</creatorcontrib><creatorcontrib>Casbon, Michelle</creatorcontrib><creatorcontrib>Nair, Aneesh</creatorcontrib><creatorcontrib>Erie, Schuyler D</creatorcontrib><creatorcontrib>Walker, Christopher</creatorcontrib><creatorcontrib>Tepper, Paul A</creatorcontrib><creatorcontrib>Luger, Sarah K</creatorcontrib><creatorcontrib>Basavaraj, Veena</creatorcontrib><creatorcontrib>Schnoebelen, Tyler J</creatorcontrib><creatorcontrib>Munro, Robert J</creatorcontrib><creatorcontrib>Long, Jessica D</creatorcontrib><creatorcontrib>Robinson, James B</creatorcontrib><title>ARCHITECTURES FOR NATURAL LANGUAGE PROCESSING</title><description>Systems are presented for generating a natural language model. The system may comprise a database module, an application program interface (API) module, a background processing module, and an applications module, each stored on the at least one memory and executable by the at least one processor. The system may be configured to generate the natural language model by: ingesting training data, generating a hierarchical data structure, selecting a plurality of documents among the training data to be annotated, generating an annotation prompt for each document configured to elicit an annotation about said document, receiving the annotation based on the annotation prompt, and generating the natural language model using an adaptive machine learning process configured to determine patterns among the annotations for how the documents in the training data are to be subdivided according to the at least two topical nodes of the hierarchical data structure.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB1DHL28AxxdQ4JDXINVnDzD1LwcwSyHX0UfBz93EMd3V0VAoL8nV2Dgz393HkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkaGRsZG5mZGjoTFxqgBr2SaT</recordid><startdate>20210729</startdate><enddate>20210729</enddate><creator>Hinrichs, Martha G</creator><creator>Brenier, Jason</creator><creator>Saxena, Tripti</creator><creator>Nunez, Edgar</creator><creator>King, Gary C</creator><creator>Sarin, Ujjwal</creator><creator>Gilchrist-Scott, Andrew</creator><creator>Callahan, Brendan D</creator><creator>Most, Haley</creator><creator>Mechanic, Ross</creator><creator>Casbon, Michelle</creator><creator>Nair, Aneesh</creator><creator>Erie, Schuyler D</creator><creator>Walker, Christopher</creator><creator>Tepper, Paul A</creator><creator>Luger, Sarah K</creator><creator>Basavaraj, Veena</creator><creator>Schnoebelen, Tyler J</creator><creator>Munro, Robert J</creator><creator>Long, Jessica D</creator><creator>Robinson, James B</creator><scope>EVB</scope></search><sort><creationdate>20210729</creationdate><title>ARCHITECTURES FOR NATURAL LANGUAGE PROCESSING</title><author>Hinrichs, Martha G ; Brenier, Jason ; Saxena, Tripti ; Nunez, Edgar ; King, Gary C ; Sarin, Ujjwal ; Gilchrist-Scott, Andrew ; Callahan, Brendan D ; Most, Haley ; Mechanic, Ross ; Casbon, Michelle ; Nair, Aneesh ; Erie, Schuyler D ; Walker, Christopher ; Tepper, Paul A ; Luger, Sarah K ; Basavaraj, Veena ; Schnoebelen, Tyler J ; Munro, Robert J ; Long, Jessica D ; Robinson, James B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021232762A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Hinrichs, Martha G</creatorcontrib><creatorcontrib>Brenier, Jason</creatorcontrib><creatorcontrib>Saxena, Tripti</creatorcontrib><creatorcontrib>Nunez, Edgar</creatorcontrib><creatorcontrib>King, Gary C</creatorcontrib><creatorcontrib>Sarin, Ujjwal</creatorcontrib><creatorcontrib>Gilchrist-Scott, Andrew</creatorcontrib><creatorcontrib>Callahan, Brendan D</creatorcontrib><creatorcontrib>Most, Haley</creatorcontrib><creatorcontrib>Mechanic, Ross</creatorcontrib><creatorcontrib>Casbon, Michelle</creatorcontrib><creatorcontrib>Nair, Aneesh</creatorcontrib><creatorcontrib>Erie, Schuyler D</creatorcontrib><creatorcontrib>Walker, Christopher</creatorcontrib><creatorcontrib>Tepper, Paul A</creatorcontrib><creatorcontrib>Luger, Sarah K</creatorcontrib><creatorcontrib>Basavaraj, Veena</creatorcontrib><creatorcontrib>Schnoebelen, Tyler J</creatorcontrib><creatorcontrib>Munro, Robert J</creatorcontrib><creatorcontrib>Long, Jessica D</creatorcontrib><creatorcontrib>Robinson, James B</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hinrichs, Martha G</au><au>Brenier, Jason</au><au>Saxena, Tripti</au><au>Nunez, Edgar</au><au>King, Gary C</au><au>Sarin, Ujjwal</au><au>Gilchrist-Scott, Andrew</au><au>Callahan, Brendan D</au><au>Most, Haley</au><au>Mechanic, Ross</au><au>Casbon, Michelle</au><au>Nair, Aneesh</au><au>Erie, Schuyler D</au><au>Walker, Christopher</au><au>Tepper, Paul A</au><au>Luger, Sarah K</au><au>Basavaraj, Veena</au><au>Schnoebelen, Tyler J</au><au>Munro, Robert J</au><au>Long, Jessica D</au><au>Robinson, James B</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ARCHITECTURES FOR NATURAL LANGUAGE PROCESSING</title><date>2021-07-29</date><risdate>2021</risdate><abstract>Systems are presented for generating a natural language model. The system may comprise a database module, an application program interface (API) module, a background processing module, and an applications module, each stored on the at least one memory and executable by the at least one processor. The system may be configured to generate the natural language model by: ingesting training data, generating a hierarchical data structure, selecting a plurality of documents among the training data to be annotated, generating an annotation prompt for each document configured to elicit an annotation about said document, receiving the annotation based on the annotation prompt, and generating the natural language model using an adaptive machine learning process configured to determine patterns among the annotations for how the documents in the training data are to be subdivided according to the at least two topical nodes of the hierarchical data structure.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021232762A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | ARCHITECTURES FOR NATURAL LANGUAGE PROCESSING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hinrichs,%20Martha%20G&rft.date=2021-07-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021232762A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |