FLEXIBLE SCHEMA TABLES

In an artificial neural network, integrality refers to the degree to which a neuron generates, for a given set of inputs, outputs that are near the border of the output range of a neuron. From each neural network of a pool of trained neural networks, a group of neurons with a higher integrality is s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Iyer, Chandrasekharan, Chaudhry, Atif, Hammerschmidt, Beda Christoph
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Iyer, Chandrasekharan
Chaudhry, Atif
Hammerschmidt, Beda Christoph
description In an artificial neural network, integrality refers to the degree to which a neuron generates, for a given set of inputs, outputs that are near the border of the output range of a neuron. From each neural network of a pool of trained neural networks, a group of neurons with a higher integrality is selected to form a neural network tunnel ("tunnel"). The tunnel must include all input neurons and output neurons from the neural network, and some of the hidden neurons. Tunnels generated from each neural network in a pool are merged to form another neural network. The new network may then be trained.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021224287A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021224287A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021224287A13</originalsourceid><addsrcrecordid>eNrjZBBz83GN8HTycVUIdvZw9XVUCHEEcoJ5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgZGhkZGJkYW5o6ExcaoAH7gf5A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>FLEXIBLE SCHEMA TABLES</title><source>esp@cenet</source><creator>Iyer, Chandrasekharan ; Chaudhry, Atif ; Hammerschmidt, Beda Christoph</creator><creatorcontrib>Iyer, Chandrasekharan ; Chaudhry, Atif ; Hammerschmidt, Beda Christoph</creatorcontrib><description>In an artificial neural network, integrality refers to the degree to which a neuron generates, for a given set of inputs, outputs that are near the border of the output range of a neuron. From each neural network of a pool of trained neural networks, a group of neurons with a higher integrality is selected to form a neural network tunnel ("tunnel"). The tunnel must include all input neurons and output neurons from the neural network, and some of the hidden neurons. Tunnels generated from each neural network in a pool are merged to form another neural network. The new network may then be trained.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210722&amp;DB=EPODOC&amp;CC=US&amp;NR=2021224287A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210722&amp;DB=EPODOC&amp;CC=US&amp;NR=2021224287A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Iyer, Chandrasekharan</creatorcontrib><creatorcontrib>Chaudhry, Atif</creatorcontrib><creatorcontrib>Hammerschmidt, Beda Christoph</creatorcontrib><title>FLEXIBLE SCHEMA TABLES</title><description>In an artificial neural network, integrality refers to the degree to which a neuron generates, for a given set of inputs, outputs that are near the border of the output range of a neuron. From each neural network of a pool of trained neural networks, a group of neurons with a higher integrality is selected to form a neural network tunnel ("tunnel"). The tunnel must include all input neurons and output neurons from the neural network, and some of the hidden neurons. Tunnels generated from each neural network in a pool are merged to form another neural network. The new network may then be trained.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBBz83GN8HTycVUIdvZw9XVUCHEEcoJ5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgZGhkZGJkYW5o6ExcaoAH7gf5A</recordid><startdate>20210722</startdate><enddate>20210722</enddate><creator>Iyer, Chandrasekharan</creator><creator>Chaudhry, Atif</creator><creator>Hammerschmidt, Beda Christoph</creator><scope>EVB</scope></search><sort><creationdate>20210722</creationdate><title>FLEXIBLE SCHEMA TABLES</title><author>Iyer, Chandrasekharan ; Chaudhry, Atif ; Hammerschmidt, Beda Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021224287A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Iyer, Chandrasekharan</creatorcontrib><creatorcontrib>Chaudhry, Atif</creatorcontrib><creatorcontrib>Hammerschmidt, Beda Christoph</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iyer, Chandrasekharan</au><au>Chaudhry, Atif</au><au>Hammerschmidt, Beda Christoph</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>FLEXIBLE SCHEMA TABLES</title><date>2021-07-22</date><risdate>2021</risdate><abstract>In an artificial neural network, integrality refers to the degree to which a neuron generates, for a given set of inputs, outputs that are near the border of the output range of a neuron. From each neural network of a pool of trained neural networks, a group of neurons with a higher integrality is selected to form a neural network tunnel ("tunnel"). The tunnel must include all input neurons and output neurons from the neural network, and some of the hidden neurons. Tunnels generated from each neural network in a pool are merged to form another neural network. The new network may then be trained.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021224287A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title FLEXIBLE SCHEMA TABLES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Iyer,%20Chandrasekharan&rft.date=2021-07-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021224287A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true