Dynamic Filter Recommendations

A user preference hierarchy is determined from user response to images. Images may be tagged using machine learning models trained to determine values for images. Products are clustered according to product vectors. Images of products within a cluster are clustered according to composition and group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Limongan, Debbie Ayano, Hsieh, Judy Yi-Chun, Chen, Lianghao, Bornstein, Julie, Agarwal, Navin, Aggarwal, Amit
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Limongan, Debbie Ayano
Hsieh, Judy Yi-Chun
Chen, Lianghao
Bornstein, Julie
Agarwal, Navin
Aggarwal, Amit
description A user preference hierarchy is determined from user response to images. Images may be tagged using machine learning models trained to determine values for images. Products are clustered according to product vectors. Images of products within a cluster are clustered according to composition and groups of images are selected from image clusters for soliciting feedback regarding user preference for products of a cluster. Feedback is used to train a user preference model to estimate affinity for a product vector. A user may provide feedback regarding a price point and products are weighted according to a distribution about the price point. The distribution may be asymmetrical according to direction of movement of the price point. Filters may be dynamically defined and presented to a user based on popularity and frequency of occurrence of attribute-value pairs of search results and based on feedback regarding the search results.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021182287A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021182287A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021182287A13</originalsourceid><addsrcrecordid>eNrjZJBzqcxLzM1MVnDLzClJLVIISk3Oz81NzUtJLMnMzyvmYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkaGhhZGRhbmjobGxKkCAJImJY4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Dynamic Filter Recommendations</title><source>esp@cenet</source><creator>Limongan, Debbie Ayano ; Hsieh, Judy Yi-Chun ; Chen, Lianghao ; Bornstein, Julie ; Agarwal, Navin ; Aggarwal, Amit</creator><creatorcontrib>Limongan, Debbie Ayano ; Hsieh, Judy Yi-Chun ; Chen, Lianghao ; Bornstein, Julie ; Agarwal, Navin ; Aggarwal, Amit</creatorcontrib><description>A user preference hierarchy is determined from user response to images. Images may be tagged using machine learning models trained to determine values for images. Products are clustered according to product vectors. Images of products within a cluster are clustered according to composition and groups of images are selected from image clusters for soliciting feedback regarding user preference for products of a cluster. Feedback is used to train a user preference model to estimate affinity for a product vector. A user may provide feedback regarding a price point and products are weighted according to a distribution about the price point. The distribution may be asymmetrical according to direction of movement of the price point. Filters may be dynamically defined and presented to a user based on popularity and frequency of occurrence of attribute-value pairs of search results and based on feedback regarding the search results.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210617&amp;DB=EPODOC&amp;CC=US&amp;NR=2021182287A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210617&amp;DB=EPODOC&amp;CC=US&amp;NR=2021182287A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Limongan, Debbie Ayano</creatorcontrib><creatorcontrib>Hsieh, Judy Yi-Chun</creatorcontrib><creatorcontrib>Chen, Lianghao</creatorcontrib><creatorcontrib>Bornstein, Julie</creatorcontrib><creatorcontrib>Agarwal, Navin</creatorcontrib><creatorcontrib>Aggarwal, Amit</creatorcontrib><title>Dynamic Filter Recommendations</title><description>A user preference hierarchy is determined from user response to images. Images may be tagged using machine learning models trained to determine values for images. Products are clustered according to product vectors. Images of products within a cluster are clustered according to composition and groups of images are selected from image clusters for soliciting feedback regarding user preference for products of a cluster. Feedback is used to train a user preference model to estimate affinity for a product vector. A user may provide feedback regarding a price point and products are weighted according to a distribution about the price point. The distribution may be asymmetrical according to direction of movement of the price point. Filters may be dynamically defined and presented to a user based on popularity and frequency of occurrence of attribute-value pairs of search results and based on feedback regarding the search results.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJBzqcxLzM1MVnDLzClJLVIISk3Oz81NzUtJLMnMzyvmYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkaGhhZGRhbmjobGxKkCAJImJY4</recordid><startdate>20210617</startdate><enddate>20210617</enddate><creator>Limongan, Debbie Ayano</creator><creator>Hsieh, Judy Yi-Chun</creator><creator>Chen, Lianghao</creator><creator>Bornstein, Julie</creator><creator>Agarwal, Navin</creator><creator>Aggarwal, Amit</creator><scope>EVB</scope></search><sort><creationdate>20210617</creationdate><title>Dynamic Filter Recommendations</title><author>Limongan, Debbie Ayano ; Hsieh, Judy Yi-Chun ; Chen, Lianghao ; Bornstein, Julie ; Agarwal, Navin ; Aggarwal, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021182287A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Limongan, Debbie Ayano</creatorcontrib><creatorcontrib>Hsieh, Judy Yi-Chun</creatorcontrib><creatorcontrib>Chen, Lianghao</creatorcontrib><creatorcontrib>Bornstein, Julie</creatorcontrib><creatorcontrib>Agarwal, Navin</creatorcontrib><creatorcontrib>Aggarwal, Amit</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Limongan, Debbie Ayano</au><au>Hsieh, Judy Yi-Chun</au><au>Chen, Lianghao</au><au>Bornstein, Julie</au><au>Agarwal, Navin</au><au>Aggarwal, Amit</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Dynamic Filter Recommendations</title><date>2021-06-17</date><risdate>2021</risdate><abstract>A user preference hierarchy is determined from user response to images. Images may be tagged using machine learning models trained to determine values for images. Products are clustered according to product vectors. Images of products within a cluster are clustered according to composition and groups of images are selected from image clusters for soliciting feedback regarding user preference for products of a cluster. Feedback is used to train a user preference model to estimate affinity for a product vector. A user may provide feedback regarding a price point and products are weighted according to a distribution about the price point. The distribution may be asymmetrical according to direction of movement of the price point. Filters may be dynamically defined and presented to a user based on popularity and frequency of occurrence of attribute-value pairs of search results and based on feedback regarding the search results.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021182287A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Dynamic Filter Recommendations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Limongan,%20Debbie%20Ayano&rft.date=2021-06-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021182287A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true