MODELING ENVIRONMENT NOISE FOR TRAINING NEURAL NETWORKS

An approach for altering alter training data and training process associated with a neural network to emulate environmental noise and operational instrument error by using the concepts of shots to sample within a squeezed space model, wherein shots are an uncertainty index that is the average of all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kwatra, Shikhar, Reiss, Gary William, Ouyang, Qiqing Christine, Baughman, Aaron K
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kwatra, Shikhar
Reiss, Gary William
Ouyang, Qiqing Christine
Baughman, Aaron K
description An approach for altering alter training data and training process associated with a neural network to emulate environmental noise and operational instrument error by using the concepts of shots to sample within a squeezed space model, wherein shots are an uncertainty index that is the average of all shots from a sampling, is disclosed. The approach leverages a squeeze theorem to create a squeezed space model based on the regression of the upper and lower bound associated with the environmental noise and instrument error. The approach calculates an average noise index based on the squeezed space model, wherein the index is used to alter the training data and process.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021158143A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021158143A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021158143A13</originalsourceid><addsrcrecordid>eNrjZDD39Xdx9fH0c1dw9QvzDPL383X1C1Hw8_cMdlVw8w9SCAly9PQDSfu5hgY5-gCpkHD_IO9gHgbWtMSc4lReKM3NoOzmGuLsoZtakB-fWlyQmJyal1oSHxpsZGBkaGhqYWhi7GhoTJwqAARRKXE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MODELING ENVIRONMENT NOISE FOR TRAINING NEURAL NETWORKS</title><source>esp@cenet</source><creator>Kwatra, Shikhar ; Reiss, Gary William ; Ouyang, Qiqing Christine ; Baughman, Aaron K</creator><creatorcontrib>Kwatra, Shikhar ; Reiss, Gary William ; Ouyang, Qiqing Christine ; Baughman, Aaron K</creatorcontrib><description>An approach for altering alter training data and training process associated with a neural network to emulate environmental noise and operational instrument error by using the concepts of shots to sample within a squeezed space model, wherein shots are an uncertainty index that is the average of all shots from a sampling, is disclosed. The approach leverages a squeeze theorem to create a squeezed space model based on the regression of the upper and lower bound associated with the environmental noise and instrument error. The approach calculates an average noise index based on the squeezed space model, wherein the index is used to alter the training data and process.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210527&amp;DB=EPODOC&amp;CC=US&amp;NR=2021158143A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210527&amp;DB=EPODOC&amp;CC=US&amp;NR=2021158143A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kwatra, Shikhar</creatorcontrib><creatorcontrib>Reiss, Gary William</creatorcontrib><creatorcontrib>Ouyang, Qiqing Christine</creatorcontrib><creatorcontrib>Baughman, Aaron K</creatorcontrib><title>MODELING ENVIRONMENT NOISE FOR TRAINING NEURAL NETWORKS</title><description>An approach for altering alter training data and training process associated with a neural network to emulate environmental noise and operational instrument error by using the concepts of shots to sample within a squeezed space model, wherein shots are an uncertainty index that is the average of all shots from a sampling, is disclosed. The approach leverages a squeeze theorem to create a squeezed space model based on the regression of the upper and lower bound associated with the environmental noise and instrument error. The approach calculates an average noise index based on the squeezed space model, wherein the index is used to alter the training data and process.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDD39Xdx9fH0c1dw9QvzDPL383X1C1Hw8_cMdlVw8w9SCAly9PQDSfu5hgY5-gCpkHD_IO9gHgbWtMSc4lReKM3NoOzmGuLsoZtakB-fWlyQmJyal1oSHxpsZGBkaGhqYWhi7GhoTJwqAARRKXE</recordid><startdate>20210527</startdate><enddate>20210527</enddate><creator>Kwatra, Shikhar</creator><creator>Reiss, Gary William</creator><creator>Ouyang, Qiqing Christine</creator><creator>Baughman, Aaron K</creator><scope>EVB</scope></search><sort><creationdate>20210527</creationdate><title>MODELING ENVIRONMENT NOISE FOR TRAINING NEURAL NETWORKS</title><author>Kwatra, Shikhar ; Reiss, Gary William ; Ouyang, Qiqing Christine ; Baughman, Aaron K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021158143A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Kwatra, Shikhar</creatorcontrib><creatorcontrib>Reiss, Gary William</creatorcontrib><creatorcontrib>Ouyang, Qiqing Christine</creatorcontrib><creatorcontrib>Baughman, Aaron K</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kwatra, Shikhar</au><au>Reiss, Gary William</au><au>Ouyang, Qiqing Christine</au><au>Baughman, Aaron K</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MODELING ENVIRONMENT NOISE FOR TRAINING NEURAL NETWORKS</title><date>2021-05-27</date><risdate>2021</risdate><abstract>An approach for altering alter training data and training process associated with a neural network to emulate environmental noise and operational instrument error by using the concepts of shots to sample within a squeezed space model, wherein shots are an uncertainty index that is the average of all shots from a sampling, is disclosed. The approach leverages a squeeze theorem to create a squeezed space model based on the regression of the upper and lower bound associated with the environmental noise and instrument error. The approach calculates an average noise index based on the squeezed space model, wherein the index is used to alter the training data and process.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021158143A1
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title MODELING ENVIRONMENT NOISE FOR TRAINING NEURAL NETWORKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kwatra,%20Shikhar&rft.date=2021-05-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021158143A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true