METHODS FOR GENERATING NATURAL LANGUAGE PROCESSING SYSTEMS

Methods are presented for generating a natural language model. The method may comprise: ingesting training data representative of documents to be analyzed by the natural language model, generating a hierarchical data structure comprising at least two topical nodes within which the training data is t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hinrichs, Martha G, Brenier, Jason, Casban, Michelle, Saxena, Tripti, Nunez, Edgar, Schnoebelen, Tyler, King, Gary C, Sarin, Ujjwal, Gilchrist-Scott, Andrew, Callahan, Brendan D, Most, Haley, Mechanic, Ross, Erle, Schuyler D, Nair, Aneesh, Walker, Christopher, Tepper, Paul A, Luger, Sarah K, Basavaraj, Veena, Munro, Robert J, Long, Jessica D, Robinson, James B
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hinrichs, Martha G
Brenier, Jason
Casban, Michelle
Saxena, Tripti
Nunez, Edgar
Schnoebelen, Tyler
King, Gary C
Sarin, Ujjwal
Gilchrist-Scott, Andrew
Callahan, Brendan D
Most, Haley
Mechanic, Ross
Erle, Schuyler D
Nair, Aneesh
Walker, Christopher
Tepper, Paul A
Luger, Sarah K
Basavaraj, Veena
Munro, Robert J
Long, Jessica D
Robinson, James B
description Methods are presented for generating a natural language model. The method may comprise: ingesting training data representative of documents to be analyzed by the natural language model, generating a hierarchical data structure comprising at least two topical nodes within which the training data is to be subdivided into by the natural language model, selecting a plurality of documents among the training data to be annotated, generating an annotation prompt for each document configured to elicit an annotation about said document indicating which node among the at least two topical nodes said document is to be classified into, receiving the annotation based on the annotation prompt; and generating the natural language model using an adaptive machine learning process configured to determine patterns among the annotations for how the documents in the training data are to be subdivided according to the at least two topical nodes of the hierarchical data structure.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021150130A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021150130A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021150130A13</originalsourceid><addsrcrecordid>eNrjZLDydQ3x8HcJVnDzD1Jwd_VzDXIM8fRzV_BzDAkNcvRR8HH0cw91dHdVCAjyd3YNDgbJBUcGh7j6BvMwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDI0NDUwNDYwNHQ2PiVAEAdbMqIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS FOR GENERATING NATURAL LANGUAGE PROCESSING SYSTEMS</title><source>esp@cenet</source><creator>Hinrichs, Martha G ; Brenier, Jason ; Casban, Michelle ; Saxena, Tripti ; Nunez, Edgar ; Schnoebelen, Tyler ; King, Gary C ; Sarin, Ujjwal ; Gilchrist-Scott, Andrew ; Callahan, Brendan D ; Most, Haley ; Mechanic, Ross ; Erle, Schuyler D ; Nair, Aneesh ; Walker, Christopher ; Tepper, Paul A ; Luger, Sarah K ; Basavaraj, Veena ; Munro, Robert J ; Long, Jessica D ; Robinson, James B</creator><creatorcontrib>Hinrichs, Martha G ; Brenier, Jason ; Casban, Michelle ; Saxena, Tripti ; Nunez, Edgar ; Schnoebelen, Tyler ; King, Gary C ; Sarin, Ujjwal ; Gilchrist-Scott, Andrew ; Callahan, Brendan D ; Most, Haley ; Mechanic, Ross ; Erle, Schuyler D ; Nair, Aneesh ; Walker, Christopher ; Tepper, Paul A ; Luger, Sarah K ; Basavaraj, Veena ; Munro, Robert J ; Long, Jessica D ; Robinson, James B</creatorcontrib><description>Methods are presented for generating a natural language model. The method may comprise: ingesting training data representative of documents to be analyzed by the natural language model, generating a hierarchical data structure comprising at least two topical nodes within which the training data is to be subdivided into by the natural language model, selecting a plurality of documents among the training data to be annotated, generating an annotation prompt for each document configured to elicit an annotation about said document indicating which node among the at least two topical nodes said document is to be classified into, receiving the annotation based on the annotation prompt; and generating the natural language model using an adaptive machine learning process configured to determine patterns among the annotations for how the documents in the training data are to be subdivided according to the at least two topical nodes of the hierarchical data structure.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210520&amp;DB=EPODOC&amp;CC=US&amp;NR=2021150130A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210520&amp;DB=EPODOC&amp;CC=US&amp;NR=2021150130A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hinrichs, Martha G</creatorcontrib><creatorcontrib>Brenier, Jason</creatorcontrib><creatorcontrib>Casban, Michelle</creatorcontrib><creatorcontrib>Saxena, Tripti</creatorcontrib><creatorcontrib>Nunez, Edgar</creatorcontrib><creatorcontrib>Schnoebelen, Tyler</creatorcontrib><creatorcontrib>King, Gary C</creatorcontrib><creatorcontrib>Sarin, Ujjwal</creatorcontrib><creatorcontrib>Gilchrist-Scott, Andrew</creatorcontrib><creatorcontrib>Callahan, Brendan D</creatorcontrib><creatorcontrib>Most, Haley</creatorcontrib><creatorcontrib>Mechanic, Ross</creatorcontrib><creatorcontrib>Erle, Schuyler D</creatorcontrib><creatorcontrib>Nair, Aneesh</creatorcontrib><creatorcontrib>Walker, Christopher</creatorcontrib><creatorcontrib>Tepper, Paul A</creatorcontrib><creatorcontrib>Luger, Sarah K</creatorcontrib><creatorcontrib>Basavaraj, Veena</creatorcontrib><creatorcontrib>Munro, Robert J</creatorcontrib><creatorcontrib>Long, Jessica D</creatorcontrib><creatorcontrib>Robinson, James B</creatorcontrib><title>METHODS FOR GENERATING NATURAL LANGUAGE PROCESSING SYSTEMS</title><description>Methods are presented for generating a natural language model. The method may comprise: ingesting training data representative of documents to be analyzed by the natural language model, generating a hierarchical data structure comprising at least two topical nodes within which the training data is to be subdivided into by the natural language model, selecting a plurality of documents among the training data to be annotated, generating an annotation prompt for each document configured to elicit an annotation about said document indicating which node among the at least two topical nodes said document is to be classified into, receiving the annotation based on the annotation prompt; and generating the natural language model using an adaptive machine learning process configured to determine patterns among the annotations for how the documents in the training data are to be subdivided according to the at least two topical nodes of the hierarchical data structure.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDydQ3x8HcJVnDzD1Jwd_VzDXIM8fRzV_BzDAkNcvRR8HH0cw91dHdVCAjyd3YNDgbJBUcGh7j6BvMwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDI0NDUwNDYwNHQ2PiVAEAdbMqIg</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Hinrichs, Martha G</creator><creator>Brenier, Jason</creator><creator>Casban, Michelle</creator><creator>Saxena, Tripti</creator><creator>Nunez, Edgar</creator><creator>Schnoebelen, Tyler</creator><creator>King, Gary C</creator><creator>Sarin, Ujjwal</creator><creator>Gilchrist-Scott, Andrew</creator><creator>Callahan, Brendan D</creator><creator>Most, Haley</creator><creator>Mechanic, Ross</creator><creator>Erle, Schuyler D</creator><creator>Nair, Aneesh</creator><creator>Walker, Christopher</creator><creator>Tepper, Paul A</creator><creator>Luger, Sarah K</creator><creator>Basavaraj, Veena</creator><creator>Munro, Robert J</creator><creator>Long, Jessica D</creator><creator>Robinson, James B</creator><scope>EVB</scope></search><sort><creationdate>20210520</creationdate><title>METHODS FOR GENERATING NATURAL LANGUAGE PROCESSING SYSTEMS</title><author>Hinrichs, Martha G ; Brenier, Jason ; Casban, Michelle ; Saxena, Tripti ; Nunez, Edgar ; Schnoebelen, Tyler ; King, Gary C ; Sarin, Ujjwal ; Gilchrist-Scott, Andrew ; Callahan, Brendan D ; Most, Haley ; Mechanic, Ross ; Erle, Schuyler D ; Nair, Aneesh ; Walker, Christopher ; Tepper, Paul A ; Luger, Sarah K ; Basavaraj, Veena ; Munro, Robert J ; Long, Jessica D ; Robinson, James B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021150130A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Hinrichs, Martha G</creatorcontrib><creatorcontrib>Brenier, Jason</creatorcontrib><creatorcontrib>Casban, Michelle</creatorcontrib><creatorcontrib>Saxena, Tripti</creatorcontrib><creatorcontrib>Nunez, Edgar</creatorcontrib><creatorcontrib>Schnoebelen, Tyler</creatorcontrib><creatorcontrib>King, Gary C</creatorcontrib><creatorcontrib>Sarin, Ujjwal</creatorcontrib><creatorcontrib>Gilchrist-Scott, Andrew</creatorcontrib><creatorcontrib>Callahan, Brendan D</creatorcontrib><creatorcontrib>Most, Haley</creatorcontrib><creatorcontrib>Mechanic, Ross</creatorcontrib><creatorcontrib>Erle, Schuyler D</creatorcontrib><creatorcontrib>Nair, Aneesh</creatorcontrib><creatorcontrib>Walker, Christopher</creatorcontrib><creatorcontrib>Tepper, Paul A</creatorcontrib><creatorcontrib>Luger, Sarah K</creatorcontrib><creatorcontrib>Basavaraj, Veena</creatorcontrib><creatorcontrib>Munro, Robert J</creatorcontrib><creatorcontrib>Long, Jessica D</creatorcontrib><creatorcontrib>Robinson, James B</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hinrichs, Martha G</au><au>Brenier, Jason</au><au>Casban, Michelle</au><au>Saxena, Tripti</au><au>Nunez, Edgar</au><au>Schnoebelen, Tyler</au><au>King, Gary C</au><au>Sarin, Ujjwal</au><au>Gilchrist-Scott, Andrew</au><au>Callahan, Brendan D</au><au>Most, Haley</au><au>Mechanic, Ross</au><au>Erle, Schuyler D</au><au>Nair, Aneesh</au><au>Walker, Christopher</au><au>Tepper, Paul A</au><au>Luger, Sarah K</au><au>Basavaraj, Veena</au><au>Munro, Robert J</au><au>Long, Jessica D</au><au>Robinson, James B</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS FOR GENERATING NATURAL LANGUAGE PROCESSING SYSTEMS</title><date>2021-05-20</date><risdate>2021</risdate><abstract>Methods are presented for generating a natural language model. The method may comprise: ingesting training data representative of documents to be analyzed by the natural language model, generating a hierarchical data structure comprising at least two topical nodes within which the training data is to be subdivided into by the natural language model, selecting a plurality of documents among the training data to be annotated, generating an annotation prompt for each document configured to elicit an annotation about said document indicating which node among the at least two topical nodes said document is to be classified into, receiving the annotation based on the annotation prompt; and generating the natural language model using an adaptive machine learning process configured to determine patterns among the annotations for how the documents in the training data are to be subdivided according to the at least two topical nodes of the hierarchical data structure.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021150130A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title METHODS FOR GENERATING NATURAL LANGUAGE PROCESSING SYSTEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hinrichs,%20Martha%20G&rft.date=2021-05-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021150130A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true