AUTOMATIC SOFTWARE BEHAVIOR IDENTIFICATION USING EXECUTION RECORD
Automatic identification of execution behavior(s) of software. This automatic identification is based on analysis of historical execution records using machine learning to identify a particular pattern that corresponds to an execution behavior. In order to automatically identify an execution behavio...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MYERS, Del MOLA, Jordi RICHARDSON, Leslie Yvette STERLAND, Andrew R PINKERTON, James M DAVIS, Jackson Michael LAI, Thomas |
description | Automatic identification of execution behavior(s) of software. This automatic identification is based on analysis of historical execution records using machine learning to identify a particular pattern that corresponds to an execution behavior. In order to automatically identify an execution behavior present within particular software, an execution record of that particular software is accessed. The execution record includes an execution trace that reproducibly represents the execution of the software within a particular execution environment, such that the execution record is usable to rerun the execution of the software precisely as the software previously run. Based on finding the particular pattern within the execution record, the computing system automatically identifies that the execution behavior is present within the software. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021141709A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021141709A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021141709A13</originalsourceid><addsrcrecordid>eNrjZHB0DA3x93UM8XRWCPZ3Cwl3DHJVcHL1cAzz9A9S8HRx9QvxdPN0Bsr7-ymEBnv6uSu4Rrg6h4L5Qa7O_kEuPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDI0NDE0NzA0tHQmDhVALL2LDc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATIC SOFTWARE BEHAVIOR IDENTIFICATION USING EXECUTION RECORD</title><source>esp@cenet</source><creator>MYERS, Del ; MOLA, Jordi ; RICHARDSON, Leslie Yvette ; STERLAND, Andrew R ; PINKERTON, James M ; DAVIS, Jackson Michael ; LAI, Thomas</creator><creatorcontrib>MYERS, Del ; MOLA, Jordi ; RICHARDSON, Leslie Yvette ; STERLAND, Andrew R ; PINKERTON, James M ; DAVIS, Jackson Michael ; LAI, Thomas</creatorcontrib><description>Automatic identification of execution behavior(s) of software. This automatic identification is based on analysis of historical execution records using machine learning to identify a particular pattern that corresponds to an execution behavior. In order to automatically identify an execution behavior present within particular software, an execution record of that particular software is accessed. The execution record includes an execution trace that reproducibly represents the execution of the software within a particular execution environment, such that the execution record is usable to rerun the execution of the software precisely as the software previously run. Based on finding the particular pattern within the execution record, the computing system automatically identifies that the execution behavior is present within the software.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210513&DB=EPODOC&CC=US&NR=2021141709A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210513&DB=EPODOC&CC=US&NR=2021141709A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MYERS, Del</creatorcontrib><creatorcontrib>MOLA, Jordi</creatorcontrib><creatorcontrib>RICHARDSON, Leslie Yvette</creatorcontrib><creatorcontrib>STERLAND, Andrew R</creatorcontrib><creatorcontrib>PINKERTON, James M</creatorcontrib><creatorcontrib>DAVIS, Jackson Michael</creatorcontrib><creatorcontrib>LAI, Thomas</creatorcontrib><title>AUTOMATIC SOFTWARE BEHAVIOR IDENTIFICATION USING EXECUTION RECORD</title><description>Automatic identification of execution behavior(s) of software. This automatic identification is based on analysis of historical execution records using machine learning to identify a particular pattern that corresponds to an execution behavior. In order to automatically identify an execution behavior present within particular software, an execution record of that particular software is accessed. The execution record includes an execution trace that reproducibly represents the execution of the software within a particular execution environment, such that the execution record is usable to rerun the execution of the software precisely as the software previously run. Based on finding the particular pattern within the execution record, the computing system automatically identifies that the execution behavior is present within the software.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB0DA3x93UM8XRWCPZ3Cwl3DHJVcHL1cAzz9A9S8HRx9QvxdPN0Bsr7-ymEBnv6uSu4Rrg6h4L5Qa7O_kEuPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDI0NDE0NzA0tHQmDhVALL2LDc</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>MYERS, Del</creator><creator>MOLA, Jordi</creator><creator>RICHARDSON, Leslie Yvette</creator><creator>STERLAND, Andrew R</creator><creator>PINKERTON, James M</creator><creator>DAVIS, Jackson Michael</creator><creator>LAI, Thomas</creator><scope>EVB</scope></search><sort><creationdate>20210513</creationdate><title>AUTOMATIC SOFTWARE BEHAVIOR IDENTIFICATION USING EXECUTION RECORD</title><author>MYERS, Del ; MOLA, Jordi ; RICHARDSON, Leslie Yvette ; STERLAND, Andrew R ; PINKERTON, James M ; DAVIS, Jackson Michael ; LAI, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021141709A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MYERS, Del</creatorcontrib><creatorcontrib>MOLA, Jordi</creatorcontrib><creatorcontrib>RICHARDSON, Leslie Yvette</creatorcontrib><creatorcontrib>STERLAND, Andrew R</creatorcontrib><creatorcontrib>PINKERTON, James M</creatorcontrib><creatorcontrib>DAVIS, Jackson Michael</creatorcontrib><creatorcontrib>LAI, Thomas</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MYERS, Del</au><au>MOLA, Jordi</au><au>RICHARDSON, Leslie Yvette</au><au>STERLAND, Andrew R</au><au>PINKERTON, James M</au><au>DAVIS, Jackson Michael</au><au>LAI, Thomas</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATIC SOFTWARE BEHAVIOR IDENTIFICATION USING EXECUTION RECORD</title><date>2021-05-13</date><risdate>2021</risdate><abstract>Automatic identification of execution behavior(s) of software. This automatic identification is based on analysis of historical execution records using machine learning to identify a particular pattern that corresponds to an execution behavior. In order to automatically identify an execution behavior present within particular software, an execution record of that particular software is accessed. The execution record includes an execution trace that reproducibly represents the execution of the software within a particular execution environment, such that the execution record is usable to rerun the execution of the software precisely as the software previously run. Based on finding the particular pattern within the execution record, the computing system automatically identifies that the execution behavior is present within the software.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021141709A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | AUTOMATIC SOFTWARE BEHAVIOR IDENTIFICATION USING EXECUTION RECORD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MYERS,%20Del&rft.date=2021-05-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021141709A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |