AUTOMATIC SOFTWARE BEHAVIOR IDENTIFICATION USING EXECUTION RECORD

Automatic identification of execution behavior(s) of software. This automatic identification is based on analysis of historical execution records using machine learning to identify a particular pattern that corresponds to an execution behavior. In order to automatically identify an execution behavio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MYERS, Del, MOLA, Jordi, RICHARDSON, Leslie Yvette, STERLAND, Andrew R, PINKERTON, James M, DAVIS, Jackson Michael, LAI, Thomas
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MYERS, Del
MOLA, Jordi
RICHARDSON, Leslie Yvette
STERLAND, Andrew R
PINKERTON, James M
DAVIS, Jackson Michael
LAI, Thomas
description Automatic identification of execution behavior(s) of software. This automatic identification is based on analysis of historical execution records using machine learning to identify a particular pattern that corresponds to an execution behavior. In order to automatically identify an execution behavior present within particular software, an execution record of that particular software is accessed. The execution record includes an execution trace that reproducibly represents the execution of the software within a particular execution environment, such that the execution record is usable to rerun the execution of the software precisely as the software previously run. Based on finding the particular pattern within the execution record, the computing system automatically identifies that the execution behavior is present within the software.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021141709A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021141709A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021141709A13</originalsourceid><addsrcrecordid>eNrjZHB0DA3x93UM8XRWCPZ3Cwl3DHJVcHL1cAzz9A9S8HRx9QvxdPN0Bsr7-ymEBnv6uSu4Rrg6h4L5Qa7O_kEuPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDI0NDE0NzA0tHQmDhVALL2LDc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATIC SOFTWARE BEHAVIOR IDENTIFICATION USING EXECUTION RECORD</title><source>esp@cenet</source><creator>MYERS, Del ; MOLA, Jordi ; RICHARDSON, Leslie Yvette ; STERLAND, Andrew R ; PINKERTON, James M ; DAVIS, Jackson Michael ; LAI, Thomas</creator><creatorcontrib>MYERS, Del ; MOLA, Jordi ; RICHARDSON, Leslie Yvette ; STERLAND, Andrew R ; PINKERTON, James M ; DAVIS, Jackson Michael ; LAI, Thomas</creatorcontrib><description>Automatic identification of execution behavior(s) of software. This automatic identification is based on analysis of historical execution records using machine learning to identify a particular pattern that corresponds to an execution behavior. In order to automatically identify an execution behavior present within particular software, an execution record of that particular software is accessed. The execution record includes an execution trace that reproducibly represents the execution of the software within a particular execution environment, such that the execution record is usable to rerun the execution of the software precisely as the software previously run. Based on finding the particular pattern within the execution record, the computing system automatically identifies that the execution behavior is present within the software.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210513&amp;DB=EPODOC&amp;CC=US&amp;NR=2021141709A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210513&amp;DB=EPODOC&amp;CC=US&amp;NR=2021141709A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MYERS, Del</creatorcontrib><creatorcontrib>MOLA, Jordi</creatorcontrib><creatorcontrib>RICHARDSON, Leslie Yvette</creatorcontrib><creatorcontrib>STERLAND, Andrew R</creatorcontrib><creatorcontrib>PINKERTON, James M</creatorcontrib><creatorcontrib>DAVIS, Jackson Michael</creatorcontrib><creatorcontrib>LAI, Thomas</creatorcontrib><title>AUTOMATIC SOFTWARE BEHAVIOR IDENTIFICATION USING EXECUTION RECORD</title><description>Automatic identification of execution behavior(s) of software. This automatic identification is based on analysis of historical execution records using machine learning to identify a particular pattern that corresponds to an execution behavior. In order to automatically identify an execution behavior present within particular software, an execution record of that particular software is accessed. The execution record includes an execution trace that reproducibly represents the execution of the software within a particular execution environment, such that the execution record is usable to rerun the execution of the software precisely as the software previously run. Based on finding the particular pattern within the execution record, the computing system automatically identifies that the execution behavior is present within the software.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB0DA3x93UM8XRWCPZ3Cwl3DHJVcHL1cAzz9A9S8HRx9QvxdPN0Bsr7-ymEBnv6uSu4Rrg6h4L5Qa7O_kEuPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDI0NDE0NzA0tHQmDhVALL2LDc</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>MYERS, Del</creator><creator>MOLA, Jordi</creator><creator>RICHARDSON, Leslie Yvette</creator><creator>STERLAND, Andrew R</creator><creator>PINKERTON, James M</creator><creator>DAVIS, Jackson Michael</creator><creator>LAI, Thomas</creator><scope>EVB</scope></search><sort><creationdate>20210513</creationdate><title>AUTOMATIC SOFTWARE BEHAVIOR IDENTIFICATION USING EXECUTION RECORD</title><author>MYERS, Del ; MOLA, Jordi ; RICHARDSON, Leslie Yvette ; STERLAND, Andrew R ; PINKERTON, James M ; DAVIS, Jackson Michael ; LAI, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021141709A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MYERS, Del</creatorcontrib><creatorcontrib>MOLA, Jordi</creatorcontrib><creatorcontrib>RICHARDSON, Leslie Yvette</creatorcontrib><creatorcontrib>STERLAND, Andrew R</creatorcontrib><creatorcontrib>PINKERTON, James M</creatorcontrib><creatorcontrib>DAVIS, Jackson Michael</creatorcontrib><creatorcontrib>LAI, Thomas</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MYERS, Del</au><au>MOLA, Jordi</au><au>RICHARDSON, Leslie Yvette</au><au>STERLAND, Andrew R</au><au>PINKERTON, James M</au><au>DAVIS, Jackson Michael</au><au>LAI, Thomas</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATIC SOFTWARE BEHAVIOR IDENTIFICATION USING EXECUTION RECORD</title><date>2021-05-13</date><risdate>2021</risdate><abstract>Automatic identification of execution behavior(s) of software. This automatic identification is based on analysis of historical execution records using machine learning to identify a particular pattern that corresponds to an execution behavior. In order to automatically identify an execution behavior present within particular software, an execution record of that particular software is accessed. The execution record includes an execution trace that reproducibly represents the execution of the software within a particular execution environment, such that the execution record is usable to rerun the execution of the software precisely as the software previously run. Based on finding the particular pattern within the execution record, the computing system automatically identifies that the execution behavior is present within the software.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021141709A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title AUTOMATIC SOFTWARE BEHAVIOR IDENTIFICATION USING EXECUTION RECORD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MYERS,%20Del&rft.date=2021-05-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021141709A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true